Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8385–8391. doi: 10.1128/jvi.71.11.8385-8391.1997

Mutations in coat protein binding sites of alfalfa mosaic virus RNA 3 affect subgenomic RNA 4 accumulation and encapsidation of viral RNAs.

C B Reusken 1, L Neeleman 1, F T Brederode 1, J F Bol 1
PMCID: PMC192300  PMID: 9343194

Abstract

The 3'-untranslated regions (3'-UTRs) of the three RNAs of alfalfa mosaic virus (AMV) contain a specific binding site for coat protein (CP) and act as a promoter for minus-strand RNA synthesis by the purified AMV RNA-dependent RNA polymerase (RdRp) in an in vitro assay. Binding of CP to the viral RNAs is required to initiate infection. The sequence of the 3'-terminal 39 nucleotides of AMV RNA 3 can be folded into two stem-loop structures flanked by three single-stranded AUGC sequences and represents a CP binding site. Mutations in this sequence that are known to interfere with CP binding in vitro were introduced into an infectious clone of RNA 3, and mutant RNA transcripts were used as templates in the in vitro RdRp assay and to infect protoplasts and plants. Mutation of AUGC motif 2 or disruption of the stem of the 3'-proximal hairpin 1 interfered with CP binding in vitro but not with minus-strand promoter activity in vitro or replication of RNA 3 in vivo. However, hairpin 1 appeared to be essential for encapsidation of RNA 3. Reversion of three G-C base pairs in hairpin 1 had no effect on CP binding but interfered with minus-strand promoter activity in vitro and with RNA 3 replication in vivo. It is concluded that the viral RdRp and CP recognize different elements in the 3'-UTRs of AMV RNAs. Moreover, several mutations that interfered with CP binding in vitro interfered with the accumulation in vivo of RNA 4, the subgenomic messenger for CP, but not with the accumulation of RNA 3.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buck K. W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res. 1996;47:159–251. doi: 10.1016/S0065-3527(08)60736-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Graaff M., Man in't Veld M. R., Jaspars E. M. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus. Virology. 1995 Apr 20;208(2):583–589. doi: 10.1006/viro.1995.1189. [DOI] [PubMed] [Google Scholar]
  3. Duggal R., Hall T. C. Interaction of host proteins with the plus-strand promoter of brome mosaic virus RNA-2. Virology. 1995 Dec 20;214(2):638–641. doi: 10.1006/viro.1995.0077. [DOI] [PubMed] [Google Scholar]
  4. Hayes R. J., Pereira V. C., Buck K. W. Plant proteins that bind to the 3'-terminal sequences of the negative-strand RNA of three diverse positive-strand RNA plant viruses. FEBS Lett. 1994 Oct 3;352(3):331–334. doi: 10.1016/0014-5793(94)00986-4. [DOI] [PubMed] [Google Scholar]
  5. Houser-Scott F., Ansel-McKinney P., Cai J. M., Gehrke L. In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3'-terminal AUGC repeats in the viral RNAs. J Virol. 1997 Mar;71(3):2310–2319. doi: 10.1128/jvi.71.3.2310-2319.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Houser-Scott F., Baer M. L., Liem K. F., Jr, Cai J. M., Gehrke L. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol. 1994 Apr;68(4):2194–2205. doi: 10.1128/jvi.68.4.2194-2205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Loesch-Fries L. S., Halk E. L., Nelson S. E., Krahn K. J. Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue. Virology. 1985 Jun;143(2):626–629. doi: 10.1016/0042-6822(85)90402-7. [DOI] [PubMed] [Google Scholar]
  9. Miller W. A., Bujarski J. J., Dreher T. W., Hall T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986 Feb 20;187(4):537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
  10. Nakhasi H. L., Cao X. Q., Rouault T. A., Liu T. Y. Specific binding of host cell proteins to the 3'-terminal stem-loop structure of rubella virus negative-strand RNA. J Virol. 1991 Nov;65(11):5961–5967. doi: 10.1128/jvi.65.11.5961-5967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakhasi H. L., Singh N. K., Pogue G. P., Cao X. Q., Rouault T. A. Identification and characterization of host factor interactions with cis-acting elements of rubella virus RNA. Arch Virol Suppl. 1994;9:255–267. doi: 10.1007/978-3-7091-9326-6_26. [DOI] [PubMed] [Google Scholar]
  12. Neeleman L., Van der Vossen E. A., Bol J. F. Infection of tobacco with alfalfa mosaic virus cDNAs sheds light on the early function of the coat protein. Virology. 1993 Oct;196(2):883–887. doi: 10.1006/viro.1993.1551. [DOI] [PubMed] [Google Scholar]
  13. Pardigon N., Strauss J. H. Cellular proteins bind to the 3' end of Sindbis virus minus-strand RNA. J Virol. 1992 Feb;66(2):1007–1015. doi: 10.1128/jvi.66.2.1007-1015.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pardigon N., Strauss J. H. Mosquito homolog of the La autoantigen binds to Sindbis virus RNA. J Virol. 1996 Feb;70(2):1173–1181. doi: 10.1128/jvi.70.2.1173-1181.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quadt R., Kao C. C., Browning K. S., Hershberger R. P., Ahlquist P. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1498–1502. doi: 10.1073/pnas.90.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quadt R., Rosdorff H. J., Hunt T. W., Jaspars E. M. Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology. 1991 May;182(1):309–315. doi: 10.1016/0042-6822(91)90674-z. [DOI] [PubMed] [Google Scholar]
  17. Ravelonandro M., Godefroy-Colburn T., Pinck L. Structure of the 5'-terminal untranslated region of the genomic RNAs from two strains of alfalfa mosaic virus. Nucleic Acids Res. 1983 May 11;11(9):2815–2826. doi: 10.1093/nar/11.9.2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reusken C. B., Bol J. F. Structural elements of the 3'-terminal coat protein binding site in alfalfa mosaic virus RNAs. Nucleic Acids Res. 1996 Jul 15;24(14):2660–2665. doi: 10.1093/nar/24.14.2660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reusken C. B., Neeleman L., Bol J. F. Ability of tobacco streak virus coat protein to substitute for late functions of alfalfa mosaic virus coat protein. J Virol. 1995 Jul;69(7):4552–4555. doi: 10.1128/jvi.69.7.4552-4555.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reusken C. B., Neeleman L., Bol J. F. The 3'-untranslated region of alfalfa mosaic virus RNA 3 contains at least two independent binding sites for viral coat protein. Nucleic Acids Res. 1994 Apr 25;22(8):1346–1353. doi: 10.1093/nar/22.8.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singh R. N., Dreher T. W. Turnip yellow mosaic virus RNA-dependent RNA polymerase: initiation of minus strand synthesis in vitro. Virology. 1997 Jul 7;233(2):430–439. doi: 10.1006/viro.1997.8621. [DOI] [PubMed] [Google Scholar]
  22. Song C., Simon A. E. Requirement of a 3'-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol. 1995 Nov 17;254(1):6–14. doi: 10.1006/jmbi.1995.0594. [DOI] [PubMed] [Google Scholar]
  23. Taschner P. E., van der Kuyl A. C., Neeleman L., Bol J. F. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology. 1991 Apr;181(2):445–450. doi: 10.1016/0042-6822(91)90876-d. [DOI] [PubMed] [Google Scholar]
  24. Van Vloten-Doting L., Jaspars E. M. The uncoating of alfalfa mosaic virus by its own RNA. Virology. 1972 Jun;48(3):699–708. doi: 10.1016/0042-6822(72)90154-7. [DOI] [PubMed] [Google Scholar]
  25. Van der Kuyl A. C., Neeleman L., Bol J. F. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis. Virology. 1991 Nov;185(1):496–499. doi: 10.1016/0042-6822(91)90807-n. [DOI] [PubMed] [Google Scholar]
  26. van Dun C. M., van Vloten-Doting L., Bol J. F. Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic tobacco plants. Virology. 1988 Apr;163(2):572–578. doi: 10.1016/0042-6822(88)90298-x. [DOI] [PubMed] [Google Scholar]
  27. van Rossum C. M., Brederode F. T., Neeleman L., Bol J. F. Functional equivalence of common and unique sequences in the 3' untranslated regions of alfalfa mosaic virus RNAs 1, 2, and 3. J Virol. 1997 May;71(5):3811–3816. doi: 10.1128/jvi.71.5.3811-3816.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van der Kuyl A. C., Neeleman L., Bol J. F. Deletion analysis of cis- and trans-acting elements involved in replication of alfalfa mosaic virus RNA 3 in vivo. Virology. 1991 Aug;183(2):687–694. doi: 10.1016/0042-6822(91)90997-p. [DOI] [PubMed] [Google Scholar]
  29. van der Vossen E. A., Neeleman L., Bol J. F. Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology. 1994 Aug 1;202(2):891–903. doi: 10.1006/viro.1994.1411. [DOI] [PubMed] [Google Scholar]
  30. van der Vossen E. A., Neeleman L., Bol J. F. The 5' terminal sequence of alfalfa mosaic virus RNA 3 is dispensable for replication and contains a determinant for symptom formation. Virology. 1996 Jul 15;221(2):271–280. doi: 10.1006/viro.1996.0376. [DOI] [PubMed] [Google Scholar]
  31. van der Vossen E. A., Notenboom T., Bol J. F. Characterization of sequences controlling the synthesis of alfalfa mosaic virus subgenomic RNA in vivo. Virology. 1995 Oct 1;212(2):663–672. doi: 10.1006/viro.1995.1524. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES