Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8467–8474. doi: 10.1128/jvi.71.11.8467-8474.1997

Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA.

E R Jensen 1, R Selvakumar 1, H Shen 1, R Ahmed 1, F O Wettstein 1, J F Miller 1
PMCID: PMC192309  PMID: 9343203

Abstract

Listeria monocytogenes is a gram-positive, facultative intracellular bacterium that enters the cytoplasm of infected cells and spreads directly into neighboring cells without encountering the extracellular environment. Cytoplasmic L. monocytogenes efficiently presents secreted proteins to the major histocompatibility complex class I pathway which can stimulate protective T-cell-mediated immune responses. We have used a cottontail rabbit papillomavirus (CRPV) rabbit model to test the ability of recombinant L. monocytogenes strains secreting the viral E1 protein (E1-rLm) to protect outbred rabbits against CRPV- and CRPV DNA-induced tumors. CRPV infection of outbred rabbits serves as a model for oncogenic papillomaviruses since CRPV-induced papillomas progress with high frequency to malignant carcinoma. Rabbits were vaccinated with wild-type L. monocytogenes or E1-rLm and then challenged with CRPV or viral DNA. In contrast to 0% papilloma regression in control animals, 77% of E1-rLm-vaccinated rabbits generated protective immunity that controlled and induced complete regression of tumors induced by CRPV. Latent viral DNA was not detected at 71% of the papilloma regression sites examined 4.5 months postregression. E1-rLm responder rabbits were completely resistant to papilloma formation from viral DNA. In contrast to controls, peripheral blood mononuclear cells from E1-rLm responder rabbits were able to proliferate in response to in vitro E1 stimulation. These results indicate that E1-rLm immunization generated a systemic anti-CRPV E1 cell-mediated immune response which protected outbred rabbits from tumors induced by CRPV or CRPV DNA challenge.

Full Text

The Full Text of this article is available as a PDF (649.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso L. C., Scharton T. M., Vieira L. Q., Wysocka M., Trinchieri G., Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science. 1994 Jan 14;263(5144):235–237. doi: 10.1126/science.7904381. [DOI] [PubMed] [Google Scholar]
  2. Altmann A., Jochmus I., Rösl F. Intra- and extracellular control mechanisms of human papillomavirus infection. Intervirology. 1994;37(3-4):180–188. doi: 10.1159/000150376. [DOI] [PubMed] [Google Scholar]
  3. Amella C. A., Lofgren L. A., Ronn A. M., Nouri M., Shikowitz M. J., Steinberg B. M. Latent infection induced with cottontail rabbit papillomavirus. A model for human papillomavirus latency. Am J Pathol. 1994 Jun;144(6):1167–1171. [PMC free article] [PubMed] [Google Scholar]
  4. Brandsma J. L. Animal models of human-papillomavirus-associated oncogenesis. Intervirology. 1994;37(3-4):189–200. doi: 10.1159/000150377. [DOI] [PubMed] [Google Scholar]
  5. Brandsma J. L., Yang Z. H., Barthold S. W., Johnson E. A. Use of a rapid, efficient inoculation method to induce papillomas by cottontail rabbit papillomavirus DNA shows that the E7 gene is required. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4816–4820. doi: 10.1073/pnas.88.11.4816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breitburd F., Kirnbauer R., Hubbert N. L., Nonnenmacher B., Trin-Dinh-Desmarquet C., Orth G., Schiller J. T., Lowy D. R. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol. 1995 Jun;69(6):3959–3963. doi: 10.1128/jvi.69.6.3959-3963.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiang C. M., Ustav M., Stenlund A., Ho T. F., Broker T. R., Chow L. T. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5799–5803. doi: 10.1073/pnas.89.13.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chow L. T., Broker T. R. Papillomavirus DNA replication. Intervirology. 1994;37(3-4):150–158. doi: 10.1159/000150373. [DOI] [PubMed] [Google Scholar]
  9. Cleveland M. G., Gorham J. D., Murphy T. L., Tuomanen E., Murphy K. M. Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun. 1996 Jun;64(6):1906–1912. doi: 10.1128/iai.64.6.1906-1912.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coleman N., Birley H. D., Renton A. M., Hanna N. F., Ryait B. K., Byrne M., Taylor-Robinson D., Stanley M. A. Immunological events in regressing genital warts. Am J Clin Pathol. 1994 Dec;102(6):768–774. doi: 10.1093/ajcp/102.6.768. [DOI] [PubMed] [Google Scholar]
  11. Czuprynski C. J., Brown J. F. Effects of purified anti-Lyt-2 mAb treatment on murine listeriosis: comparative roles of Lyt-2+ and L3T4+ cells in resistance to primary and secondary infection, delayed-type hypersensitivity and adoptive transfer of resistance. Immunology. 1990 Sep;71(1):107–112. [PMC free article] [PubMed] [Google Scholar]
  12. Del Vecchio A. M., Romanczuk H., Howley P. M., Baker C. C. Transient replication of human papillomavirus DNAs. J Virol. 1992 Oct;66(10):5949–5958. doi: 10.1128/jvi.66.10.5949-5958.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DiBonito L., Falconieri G., Bonifacio-Gori D. Multicentric papillomavirus infection of the female genital tract. A study of morphologic pattern, possible risk factors and viral prevalence. Pathol Res Pract. 1993 Nov;189(9):1023–1029. doi: 10.1016/S0344-0338(11)80675-8. [DOI] [PubMed] [Google Scholar]
  14. Donnelly J. J., Martinez D., Jansen K. U., Ellis R. W., Montgomery D. L., Liu M. A. Protection against papillomavirus with a polynucleotide vaccine. J Infect Dis. 1996 Feb;173(2):314–320. doi: 10.1093/infdis/173.2.314. [DOI] [PubMed] [Google Scholar]
  15. Evans C. A., Ito Y. Antitumor immunity in the Shope papilloma-carcinoma complex of rabbits. 3. Response to reinfection with viral nucleic acid. J Natl Cancer Inst. 1966 Jun;36(6):1161–1166. [PubMed] [Google Scholar]
  16. Fuchs P. G., Pfister H. Transcription of papillomavirus genomes. Intervirology. 1994;37(3-4):159–167. doi: 10.1159/000150374. [DOI] [PubMed] [Google Scholar]
  17. Giladi M., Champion C. I., Haake D. A., Blanco D. R., Miller J. F., Miller J. N., Lovett M. A. Use of the "blue halo" assay in the identification of genes encoding exported proteins with cleavable signal peptides: cloning of a Borrelia burgdorferi plasmid gene with a signal peptide. J Bacteriol. 1993 Jul;175(13):4129–4136. doi: 10.1128/jb.175.13.4129-4136.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goossens P. L., Milon G., Cossart P., Saron M. F. Attenuated Listeria monocytogenes as a live vector for induction of CD8+ T cells in vivo: a study with the nucleoprotein of the lymphocytic choriomeningitis virus. Int Immunol. 1995 May;7(5):797–805. doi: 10.1093/intimm/7.5.797. [DOI] [PubMed] [Google Scholar]
  19. Harty J. T., Bevan M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med. 1992 Jun 1;175(6):1531–1538. doi: 10.1084/jem.175.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harty J. T., Pamer E. G. CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J Immunol. 1995 May 1;154(9):4642–4650. [PubMed] [Google Scholar]
  21. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  22. Ikonomidis G., Paterson Y., Kos F. J., Portnoy D. A. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med. 1994 Dec 1;180(6):2209–2218. doi: 10.1084/jem.180.6.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jansen K. U., Rosolowsky M., Schultz L. D., Markus H. Z., Cook J. C., Donnelly J. J., Martinez D., Ellis R. W., Shaw A. R. Vaccination with yeast-expressed cottontail rabbit papillomavirus (CRPV) virus-like particles protects rabbits from CRPV-induced papilloma formation. Vaccine. 1995 Nov;13(16):1509–1514. doi: 10.1016/0264-410x(95)00103-8. [DOI] [PubMed] [Google Scholar]
  24. Kreider J. W., Bartlett G. L. The Shope papilloma-carcinoma complex of rabbits: a model system of neoplastic progression and spontaneous regression. Adv Cancer Res. 1981;35:81–110. doi: 10.1016/s0065-230x(08)60909-4. [DOI] [PubMed] [Google Scholar]
  25. Lambert P. F. Papillomavirus DNA replication. J Virol. 1991 Jul;65(7):3417–3420. doi: 10.1128/jvi.65.7.3417-3420.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lin Y. L., Borenstein L. A., Ahmed R., Wettstein F. O. Cottontail rabbit papillomavirus L1 protein-based vaccines: protection is achieved only with a full-length, nondenatured product. J Virol. 1993 Jul;67(7):4154–4162. doi: 10.1128/jvi.67.7.4154-4162.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lin Y. L., Borenstein L. A., Selvakumar R., Ahmed R., Wettstein F. O. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology. 1992 Apr;187(2):612–619. doi: 10.1016/0042-6822(92)90463-y. [DOI] [PubMed] [Google Scholar]
  28. Lin Y. L., Borenstein L. A., Selvakumar R., Ahmed R., Wettstein F. O. Progression from papilloma to carcinoma is accompanied by changes in antibody response to papillomavirus proteins. J Virol. 1993 Jan;67(1):382–389. doi: 10.1128/jvi.67.1.382-389.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loessner M. J., Schneider A., Scherer S. A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol. 1995 Mar;61(3):1150–1152. doi: 10.1128/aem.61.3.1150-1152.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maiman M., Fruchter R. G., Serur E., Remy J. C., Feuer G., Boyce J. Human immunodeficiency virus infection and cervical neoplasia. Gynecol Oncol. 1990 Sep;38(3):377–382. doi: 10.1016/0090-8258(90)90077-x. [DOI] [PubMed] [Google Scholar]
  31. Maran A., Amella C. A., Di Lorenzo T. P., Auborn K. J., Taichman L. B., Steinberg B. M. Human papillomavirus type 11 transcripts are present at low abundance in latently infected respiratory tissues. Virology. 1995 Oct 1;212(2):285–294. doi: 10.1006/viro.1995.1486. [DOI] [PubMed] [Google Scholar]
  32. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun. 1988 Apr;56(4):766–772. doi: 10.1128/iai.56.4.766-772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okabayashi M., Angell M. G., Christensen N. D., Kreider J. W. Morphometric analysis and identification of infiltrating leucocytes in regressing and progressing Shope rabbit papillomas. Int J Cancer. 1991 Dec 2;49(6):919–923. doi: 10.1002/ijc.2910490620. [DOI] [PubMed] [Google Scholar]
  34. Pamer E. G. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol. 1994 Jan 15;152(2):686–694. [PubMed] [Google Scholar]
  35. Pamer E. G., Harty J. T., Bevan M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature. 1991 Oct 31;353(6347):852–855. doi: 10.1038/353852a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pan Z. K., Ikonomidis G., Lazenby A., Pardoll D., Paterson Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat Med. 1995 May;1(5):471–477. doi: 10.1038/nm0595-471. [DOI] [PubMed] [Google Scholar]
  37. Pan Z. K., Ikonomidis G., Pardoll D., Paterson Y. Regression of established tumors in mice mediated by the oral administration of a recombinant Listeria monocytogenes vaccine. Cancer Res. 1995 Nov 1;55(21):4776–4779. [PubMed] [Google Scholar]
  38. Park S. F., Stewart G. S. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene. 1990 Sep 28;94(1):129–132. doi: 10.1016/0378-1119(90)90479-b. [DOI] [PubMed] [Google Scholar]
  39. Petry K. U., Scheffel D., Bode U., Gabrysiak T., Köchel H., Kupsch E., Glaubitz M., Niesert S., Kühnle H., Schedel I. Cellular immunodeficiency enhances the progression of human papillomavirus-associated cervical lesions. Int J Cancer. 1994 Jun 15;57(6):836–840. doi: 10.1002/ijc.2910570612. [DOI] [PubMed] [Google Scholar]
  40. Pfister H., Fuchs P. G. Anatomy, taxonomy and evolution of papillomaviruses. Intervirology. 1994;37(3-4):143–149. doi: 10.1159/000150372. [DOI] [PubMed] [Google Scholar]
  41. Sanderson S., Campbell D. J., Shastri N. Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning. J Exp Med. 1995 Dec 1;182(6):1751–1757. doi: 10.1084/jem.182.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schafer R., Portnoy D. A., Brassell S. A., Paterson Y. Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J Immunol. 1992 Jul 1;149(1):53–59. [PubMed] [Google Scholar]
  43. Schmitt A., Rochat A., Zeltner R., Borenstein L., Barrandon Y., Wettstein F. O., Iftner T. The primary target cells of the high-risk cottontail rabbit papillomavirus colocalize with hair follicle stem cells. J Virol. 1996 Mar;70(3):1912–1922. doi: 10.1128/jvi.70.3.1912-1922.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Selvakumar R., Ahmed R., Wettstein F. O. Tumor regression is associated with a specific immune response to the E2 protein of cottontail rabbit papillomavirus. Virology. 1995 Apr 1;208(1):298–302. doi: 10.1006/viro.1995.1152. [DOI] [PubMed] [Google Scholar]
  45. Selvakumar R., Borenstein L. A., Lin Y. L., Ahmed R., Wettstein F. O. Immunization with nonstructural proteins E1 and E2 of cottontail rabbit papillomavirus stimulates regression of virus-induced papillomas. J Virol. 1995 Jan;69(1):602–605. doi: 10.1128/jvi.69.1.602-605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Selvakumar R., Borenstein L. A., Lin Y. L., Ahmed R., Wettstein F. O. T-cell response to cottontail rabbit papillomavirus structural proteins in infected rabbits. J Virol. 1994 Jun;68(6):4043–4048. doi: 10.1128/jvi.68.6.4043-4048.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Selvakumar R., Schmitt A., Iftner T., Ahmed R., Wettstein F. O. Regression of papillomas induced by cottontail rabbit papillomavirus is associated with infiltration of CD8+ cells and persistence of viral DNA after regression. J Virol. 1997 Jul;71(7):5540–5548. doi: 10.1128/jvi.71.7.5540-5548.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sheehan B., Kocks C., Dramsi S., Gouin E., Klarsfeld A. D., Mengaud J., Cossart P. Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Top Microbiol Immunol. 1994;192:187–216. doi: 10.1007/978-3-642-78624-2_9. [DOI] [PubMed] [Google Scholar]
  49. Shen H., Slifka M. K., Matloubian M., Jensen E. R., Ahmed R., Miller J. F. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3987–3991. doi: 10.1073/pnas.92.9.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Slifka M. K., Shen H., Matloubian M., Jensen E. R., Miller J. F., Ahmed R. Antiviral cytotoxic T-cell memory by vaccination with recombinant Listeria monocytogenes. J Virol. 1996 May;70(5):2902–2910. doi: 10.1128/jvi.70.5.2902-2910.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tindle R. W., Frazer I. H. Immune response to human papillomaviruses and the prospects for human papillomavirus-specific immunisation. Curr Top Microbiol Immunol. 1994;186:217–253. doi: 10.1007/978-3-642-78487-3_12. [DOI] [PubMed] [Google Scholar]
  53. Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994 Dec 15;84(12):4008–4027. [PubMed] [Google Scholar]
  54. Ustav M., Stenlund A. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J. 1991 Feb;10(2):449–457. doi: 10.1002/j.1460-2075.1991.tb07967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wu X., Xiao W., Brandsma J. L. Papilloma formation by cottontail rabbit papillomavirus requires E1 and E2 regulatory genes in addition to E6 and E7 transforming genes. J Virol. 1994 Sep;68(9):6097–6102. doi: 10.1128/jvi.68.9.6097-6102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zeltner R., Borenstein L. A., Wettstein F. O., Iftner T. Changes in RNA expression pattern during the malignant progression of cottontail rabbit papillomavirus-induced tumors in rabbits. J Virol. 1994 Jun;68(6):3620–3630. doi: 10.1128/jvi.68.6.3620-3630.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES