Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8497–8503. doi: 10.1128/jvi.71.11.8497-8503.1997

DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction.

F Rodriguez 1, J Zhang 1, J L Whitton 1
PMCID: PMC192313  PMID: 9343207

Abstract

DNA immunization can induce cytotoxic T lymphocytes (CTL), antibodies, and protection against microbial challenge. The underlying mechanisms remain obscure and must be understood to permit rational manipulation and optimization of the technique. We set out to enhance the intracellular degradation of a viral antigen, with the intent of improving antigen entry into, and presentation by, the class I major histocompatibility complex pathway. We achieved this goal by cotranslational ubiquitination of a plasmid-encoded viral antigen, lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP). We show that native NP is very stable in cell culture, while the ubiquitinated product is so rapidly degraded that it is barely detectable. This rapid degradation leads to more efficient sensitization of target cells in an in vitro cytotoxicity assay, consistent with enhanced antigen presentation, and both degradation and target cell recognition are blocked by a proteasome inhibitor. We have used the plasmid for in vivo studies and find that, remarkably, ubiquitination leads to a complete abrogation of antibody responses, presumably because the encoded protein is so rapidly and completely degraded that insufficient antigen remains to interact appropriately with B cells. In contrast, in vivo CTL induction is improved by ubiquitination of NP. That CTL are induced at all by this rapidly degraded protein may shed light on the mechanism by which CTL are induced by DNA immunization; it has been suggested that CTL induction following intramuscular DNA injection results not from antigen presentation by cells taking up and expressing the DNA but rather from uptake of soluble protein by specialized antigen-presenting cells (APC). It appears to us unlikely that the ubiquitinated protein could function in this manner, since it is so rapidly degraded in vitro and fails to induce antibodies in vivo. Finally, the ubiquitinated protein confers markedly enhanced protection against LCMV challenge. Mice immunized with a plasmid encoding NP show approximately 100-fold reductions in virus titers compared to controls, while mice immunized with a plasmid encoding the ubiquitinated NP show reductions in virus load of at least 5 x 10(4)- to 5 x 10(5)-fold. This is by far the most effective DNA vaccine that we have yet designed. Ubiquitination therefore may improve DNA immunization, but caution is warranted, since immunity to many microbes depends on induction of good humoral immunity, and we show here that this may be prevented by ubiquitination of the encoded protein.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aichele P., Hengartner H., Zinkernagel R. M., Schulz M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J Exp Med. 1990 May 1;171(5):1815–1820. doi: 10.1084/jem.171.5.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argilés J. M., López-Soriano F. J. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. Trends Pharmacol Sci. 1996 Jun;17(6):223–226. doi: 10.1016/0165-6147(96)10021-3. [DOI] [PubMed] [Google Scholar]
  3. Cerundolo V., Benham A., Braud V., Mukherjee S., Gould K., Macino B., Neefjes J., Townsend A. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J Immunol. 1997 Jan;27(1):336–341. doi: 10.1002/eji.1830270148. [DOI] [PubMed] [Google Scholar]
  4. Corr M., Lee D. J., Carson D. A., Tighe H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med. 1996 Oct 1;184(4):1555–1560. doi: 10.1084/jem.184.4.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox J. H., Galardy P., Bennink J. R., Yewdell J. W. Presentation of endogenous and exogenous antigens is not affected by inactivation of E1 ubiquitin-activating enzyme in temperature-sensitive cell lines. J Immunol. 1995 Jan 15;154(2):511–519. [PubMed] [Google Scholar]
  6. Ecker D. J., Stadel J. M., Butt T. R., Marsh J. A., Monia B. P., Powers D. A., Gorman J. A., Clark P. E., Warren F., Shatzman A. Increasing gene expression in yeast by fusion to ubiquitin. J Biol Chem. 1989 May 5;264(13):7715–7719. [PubMed] [Google Scholar]
  7. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  8. Finch J. S., Bonham K., Krieg P., Bowden G. T. Murine polyubiquitin mRNA sequence. Nucleic Acids Res. 1990 Apr 11;18(7):1907–1907. doi: 10.1093/nar/18.7.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: a novel approach to immunization. Int J Immunopharmacol. 1995 Feb;17(2):79–83. doi: 10.1016/0192-0561(94)00090-b. [DOI] [PubMed] [Google Scholar]
  10. Hany M., Oehen S., Schulz M., Hengartner H., Mackett M., Bishop D. H., Overton H., Zinkernagel R. M. Anti-viral protection and prevention of lymphocytic choriomeningitis or of the local footpad swelling reaction in mice by immunization with vaccinia-recombinant virus expressing LCMV-WE nucleoprotein or glycoprotein. Eur J Immunol. 1989 Mar;19(3):417–424. doi: 10.1002/eji.1830190302. [DOI] [PubMed] [Google Scholar]
  11. Hassett D. E., Whitton J. L. DNA immunization. Trends Microbiol. 1996 Aug;4(8):307–312. doi: 10.1016/0966-842x(96)10048-2. [DOI] [PubMed] [Google Scholar]
  12. Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995 Apr;7(2):215–223. doi: 10.1016/0955-0674(95)80031-x. [DOI] [PubMed] [Google Scholar]
  13. Iwasaki A., Torres C. A., Ohashi P. S., Robinson H. L., Barber B. H. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol. 1997 Jul 1;159(1):11–14. [PubMed] [Google Scholar]
  14. Klavinskis L. S., Whitton J. L., Oldstone M. B. Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol. 1989 Oct;63(10):4311–4316. doi: 10.1128/jvi.63.10.4311-4316.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kulkarni A. B., Collins P. L., Bacik I., Yewdell J. W., Bennink J. R., Crowe J. E., Jr, Murphy B. R. Cytotoxic T cells specific for a single peptide on the M2 protein of respiratory syncytial virus are the sole mediators of resistance induced by immunization with M2 encoded by a recombinant vaccinia virus. J Virol. 1995 Feb;69(2):1261–1264. doi: 10.1128/jvi.69.2.1261-1264.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lehner P. J., Cresswell P. Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol. 1996 Feb;8(1):59–67. doi: 10.1016/s0952-7915(96)80106-3. [DOI] [PubMed] [Google Scholar]
  18. Martins L. P., Lau L. L., Asano M. S., Ahmed R. DNA vaccination against persistent viral infection. J Virol. 1995 Apr;69(4):2574–2582. doi: 10.1128/jvi.69.4.2574-2582.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Michalek M. T., Grant E. P., Gramm C., Goldberg A. L., Rock K. L. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature. 1993 Jun 10;363(6429):552–554. doi: 10.1038/363552a0. [DOI] [PubMed] [Google Scholar]
  20. Michalek M. T., Grant E. P., Rock K. L. Chemical denaturation and modification of ovalbumin alters its dependence on ubiquitin conjugation for class I antigen presentation. J Immunol. 1996 Jul 15;157(2):617–624. [PubMed] [Google Scholar]
  21. Ortmann B., Androlewicz M. J., Cresswell P. MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature. 1994 Apr 28;368(6474):864–867. doi: 10.1038/368864a0. [DOI] [PubMed] [Google Scholar]
  22. Price S. R., Bailey J. L., Wang X., Jurkovitz C., England B. K., Ding X., Phillips L. S., Mitch W. E. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest. 1996 Oct 15;98(8):1703–1708. doi: 10.1172/JCI118968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rock K. L. A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today. 1996 Mar;17(3):131–137. doi: 10.1016/0167-5699(96)80605-0. [DOI] [PubMed] [Google Scholar]
  24. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  25. Schulz M., Aichele P., Vollenweider M., Bobe F. W., Cardinaux F., Hengartner H., Zinkernagel R. M. Major histocompatibility complex--dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. Eur J Immunol. 1989 Sep;19(9):1657–1667. doi: 10.1002/eji.1830190921. [DOI] [PubMed] [Google Scholar]
  26. Shean B. S., Mykles D. L. Polyubiquitin in crustacean striated muscle: increased expression and conjugation during molt-induced claw muscle atrophy. Biochim Biophys Acta. 1995 Dec 27;1264(3):312–322. doi: 10.1016/0167-4781(95)00167-0. [DOI] [PubMed] [Google Scholar]
  27. Solomon V., Goldberg A. L. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem. 1996 Oct 25;271(43):26690–26697. doi: 10.1074/jbc.271.43.26690. [DOI] [PubMed] [Google Scholar]
  28. Tiao G., Hobler S., Wang J. J., Meyer T. A., Luchette F. A., Fischer J. E., Hasselgren P. O. Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest. 1997 Jan 15;99(2):163–168. doi: 10.1172/JCI119143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tobery T. W., Siliciano R. F. Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med. 1997 Mar 3;185(5):909–920. doi: 10.1084/jem.185.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Townsend A., Bastin J., Gould K., Brownlee G., Andrew M., Coupar B., Boyle D., Chan S., Smith G. Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med. 1988 Oct 1;168(4):1211–1224. doi: 10.1084/jem.168.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whalen R. G., Davis H. L. DNA-mediated immunization and the energetic immune response to hepatitis B surface antigen. Clin Immunol Immunopathol. 1995 Apr;75(1):1–12. doi: 10.1006/clin.1995.1045. [DOI] [PubMed] [Google Scholar]
  33. Whitton J. L., Gebhard J. R., Lewicki H., Tishon A., Oldstone M. B. Molecular definition of a major cytotoxic T-lymphocyte epitope in the glycoprotein of lymphocytic choriomeningitis virus. J Virol. 1988 Mar;62(3):687–695. doi: 10.1128/jvi.62.3.687-695.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Whitton J. L., Yokoyama M. Proteins expressed by DNA vaccines induce both local and systemic immune responses. Ann N Y Acad Sci. 1996 Oct 25;797:196–206. doi: 10.1111/j.1749-6632.1996.tb52961.x. [DOI] [PubMed] [Google Scholar]
  35. Whitton J. L., Zhang J. Principles of cytotoxic T lymphocyte induction and recognition. Curr Top Microbiol Immunol. 1995;202:247–259. doi: 10.1007/978-3-642-79657-9_16. [DOI] [PubMed] [Google Scholar]
  36. Yokoyama M., Zhang J., Whitton J. L. DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol. 1995 Apr;69(4):2684–2688. doi: 10.1128/jvi.69.4.2684-2688.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yokoyama M., Zhang J., Whitton J. L. DNA immunization: effects of vehicle and route of administration on the induction of protective antiviral immunity. FEMS Immunol Med Microbiol. 1996 Jul;14(4):221–230. doi: 10.1111/j.1574-695X.1996.tb00290.x. [DOI] [PubMed] [Google Scholar]
  38. Zarozinski C. C., Fynan E. F., Selin L. K., Robinson H. L., Welsh R. M. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol. 1995 Apr 15;154(8):4010–4017. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES