Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8808–8820. doi: 10.1128/jvi.71.11.8808-8820.1997

Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity.

L R Hoffman 1, I D Kuntz 1, J M White 1
PMCID: PMC192347  PMID: 9343241

Abstract

Past efforts to employ a structure-based approach to design an inhibitor of the fusion-inducing conformational change in the influenza virus hemagglutinin (HA) yielded a family of small benzoquinones and hydroquinones. The most potent of these, tert-butyl hydroquinone (TBHQ), inhibits both the conformational change in HA from strain X:31 influenza virus and viral infectivity in tissue culture cells with 50% inhibitory concentrations in the micromolar range (D. L. Bodian, R. B. Yamasaki, R. L. Buswell, J. F. Stearns, J. M. White, and I. D. Kuntz, Biochemistry 32:2967-2978, 1993). A new structure-based inhibitor design search was begun which involved (i) the recently refined crystal structure (2.1-A resolution) of the HA ectodomain, (ii) new insights into the conformational change, and (iii) improvements in the molecular docking program, DOCK. As a result, we identified new inhibitors of HA-mediated membrane fusion. Like TBHQ, most of these molecules inhibit the conformational change. One of the new compounds, however, facilitates rather than inhibits the HA conformational change. Nonetheless, the facilitator, diiodofluorescein, inhibits HA-mediated membrane fusion and, irreversibly, infectivity. We further characterized the effects of inhibitors from both searches on the conformational change and membrane fusion activity of HA as well as on viral infectivity. We also isolated and characterized several mutants resistant to each class of inhibitor. The implications of our results for HA-mediated membrane fusion, anti-influenza virus therapy, and structure-based inhibitor design are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D., Agard D. A. Influenza hemagglutinin: kinetic control of protein function. Structure. 1994 Oct 15;2(10):907–910. doi: 10.1016/s0969-2126(94)00091-3. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bethell R. C., Gray N. M., Penn C. R. The kinetics of the acid-induced conformational change of influenza virus haemagglutinin can be followed using 1,1'-bis(4-anilino-5-naphthalenesulphonic acid). Biochem Biophys Res Commun. 1995 Jan 5;206(1):355–361. doi: 10.1006/bbrc.1995.1049. [DOI] [PubMed] [Google Scholar]
  4. Bodian D. L., Yamasaki R. B., Buswell R. L., Stearns J. F., White J. M., Kuntz I. D. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry. 1993 Mar 30;32(12):2967–2978. doi: 10.1021/bi00063a007. [DOI] [PubMed] [Google Scholar]
  5. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  6. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  7. Connolly L., Zingler K., Young J. A. A soluble form of a receptor for subgroup A avian leukosis and sarcoma viruses (ALSV-A) blocks infection and binds directly to ALSV-A. J Virol. 1994 Apr;68(4):2760–2764. doi: 10.1128/jvi.68.4.2760-2764.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985 Feb;40(2):431–439. doi: 10.1016/0092-8674(85)90157-6. [DOI] [PubMed] [Google Scholar]
  9. DesJarlais R. L., Sheridan R. P., Seibel G. L., Dixon J. S., Kuntz I. D., Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem. 1988 Apr;31(4):722–729. doi: 10.1021/jm00399a006. [DOI] [PubMed] [Google Scholar]
  10. Doms R. W., Gething M. J., Henneberry J., White J., Helenius A. Variant influenza virus hemagglutinin that induces fusion at elevated pH. J Virol. 1986 Feb;57(2):603–613. doi: 10.1128/jvi.57.2.603-613.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellens H., Doxsey S., Glenn J. S., White J. M. Delivery of macromolecules into cells expressing a viral membrane fusion protein. Methods Cell Biol. 1989;31:155–178. doi: 10.1016/s0091-679x(08)61607-6. [DOI] [PubMed] [Google Scholar]
  12. Gaush C. R., Smith T. F. Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol. 1968 Apr;16(4):588–594. doi: 10.1128/am.16.4.588-594.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gilbert J. M., Hernandez L. D., Balliet J. W., Bates P., White J. M. Receptor-induced conformational changes in the subgroup A avian leukosis and sarcoma virus envelope glycoprotein. J Virol. 1995 Dec;69(12):7410–7415. doi: 10.1128/jvi.69.12.7410-7415.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell. 1992 Feb 21;68(4):635–645. doi: 10.1016/0092-8674(92)90140-8. [DOI] [PubMed] [Google Scholar]
  15. Gschwend D. A., Kuntz I. D. Orientational sampling and rigid-body minimization in molecular docking revisited: on-the-fly optimization and degeneracy removal. J Comput Aided Mol Des. 1996 Apr;10(2):123–132. doi: 10.1007/BF00402820. [DOI] [PubMed] [Google Scholar]
  16. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol. 1996;12:627–661. doi: 10.1146/annurev.cellbio.12.1.627. [DOI] [PubMed] [Google Scholar]
  17. Houck P., Hemphill M., LaCroix S., Hirsh D., Cox N. Amantadine-resistant influenza A in nursing homes. Identification of a resistant virus prior to drug use. Arch Intern Med. 1995 Mar 13;155(5):533–537. [PubMed] [Google Scholar]
  18. Huang R. T., Rott R., Klenk H. D. Influenza viruses cause hemolysis and fusion of cells. Virology. 1981 Apr 15;110(1):243–247. doi: 10.1016/0042-6822(81)90030-1. [DOI] [PubMed] [Google Scholar]
  19. Kemble G. W., Bodian D. L., Rosé J., Wilson I. A., White J. M. Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. J Virol. 1992 Aug;66(8):4940–4950. doi: 10.1128/jvi.66.8.4940-4950.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994 Jan 28;76(2):383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  21. Krumbiegel M., Herrmann A., Blumenthal R. Kinetics of the low pH-induced conformational changes and fusogenic activity of influenza hemagglutinin. Biophys J. 1994 Dec;67(6):2355–2360. doi: 10.1016/S0006-3495(94)80721-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lambert D. M., Barney S., Lambert A. L., Guthrie K., Medinas R., Davis D. E., Bucy T., Erickson J., Merutka G., Petteway S. R., Jr Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2186–2191. doi: 10.1073/pnas.93.5.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luo G., Colonno R., Krystal M. Characterization of a hemagglutinin-specific inhibitor of influenza A virus. Virology. 1996 Dec 1;226(1):66–76. doi: 10.1006/viro.1996.0628. [DOI] [PubMed] [Google Scholar]
  24. Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995 Nov;131(3):679–691. doi: 10.1083/jcb.131.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Service R. F. Researchers seek new weapon against the flu. Science. 1997 Feb 7;275(5301):756–757. doi: 10.1126/science.275.5301.756. [DOI] [PubMed] [Google Scholar]
  26. Shangguan T., Alford D., Bentz J. Influenza-virus-liposome lipid mixing is leaky and largely insensitive to the material properties of the target membrane. Biochemistry. 1996 Apr 16;35(15):4956–4965. doi: 10.1021/bi9526903. [DOI] [PubMed] [Google Scholar]
  27. Shoichet B. K., Kuntz I. D. Protein docking and complementarity. J Mol Biol. 1991 Sep 5;221(1):327–346. doi: 10.1016/0022-2836(91)80222-g. [DOI] [PubMed] [Google Scholar]
  28. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A. 1982 Feb;79(4):968–972. doi: 10.1073/pnas.79.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Staschke K. A., Colacino J. M., Baxter A. J., Air G. M., Bansal A., Hornback W. J., Munroe J. E., Laver W. G. Molecular basis for the resistance of influenza viruses to 4-guanidino-Neu5Ac2en. Virology. 1995 Dec 20;214(2):642–646. doi: 10.1006/viro.1995.0078. [DOI] [PubMed] [Google Scholar]
  30. Stegmann T., Booy F. P., Wilschut J. Effects of low pH on influenza virus. Activation and inactivation of the membrane fusion capacity of the hemagglutinin. J Biol Chem. 1987 Dec 25;262(36):17744–17749. [PubMed] [Google Scholar]
  31. Stegmann T., Morselt H. W., Scholma J., Wilschut J. Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochim Biophys Acta. 1987 Nov 2;904(1):165–170. doi: 10.1016/0005-2736(87)90100-3. [DOI] [PubMed] [Google Scholar]
  32. Steinhauer D. A., Wharton S. A., Skehel J. J., Wiley D. C., Hay A. J. Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11525–11529. doi: 10.1073/pnas.88.24.11525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tobita K., Sugiura A., Enomote C., Furuyama M. Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol. 1975 Dec 30;162(1):9–14. doi: 10.1007/BF02123572. [DOI] [PubMed] [Google Scholar]
  34. Tomassini J. E., Davies M. E., Hastings J. C., Lingham R., Mojena M., Raghoobar S. L., Singh S. B., Tkacz J. S., Goetz M. A. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob Agents Chemother. 1996 May;40(5):1189–1193. doi: 10.1128/aac.40.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tu Q., Pinto L. H., Luo G., Shaughnessy M. A., Mullaney D., Kurtz S., Krystal M., Lamb R. A. Characterization of inhibition of M2 ion channel activity by BL-1743, an inhibitor of influenza A virus. J Virol. 1996 Jul;70(7):4246–4252. doi: 10.1128/jvi.70.7.4246-4252.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Watowich S. J., Skehel J. J., Wiley D. C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure. 1994 Aug 15;2(8):719–731. doi: 10.1016/s0969-2126(00)00073-3. [DOI] [PubMed] [Google Scholar]
  37. Weber T., Paesold G., Galli C., Mischler R., Semenza G., Brunner J. Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. J Biol Chem. 1994 Jul 15;269(28):18353–18358. [PubMed] [Google Scholar]
  38. Weis W. I., Brünger A. T., Skehel J. J., Wiley D. C. Refinement of the influenza virus hemagglutinin by simulated annealing. J Mol Biol. 1990 Apr 20;212(4):737–761. doi: 10.1016/0022-2836(90)90234-D. [DOI] [PubMed] [Google Scholar]
  39. Weis W. I., Cusack S. C., Brown J. H., Daniels R. S., Skehel J. J., Wiley D. C. The structure of a membrane fusion mutant of the influenza virus haemagglutinin. EMBO J. 1990 Jan;9(1):17–24. doi: 10.1002/j.1460-2075.1990.tb08075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wharton S. A., Belshe R. B., Skehel J. J., Hay A. J. Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol. 1994 Apr;75(Pt 4):945–948. doi: 10.1099/0022-1317-75-4-945. [DOI] [PubMed] [Google Scholar]
  41. Wharton S. A., Calder L. J., Ruigrok R. W., Skehel J. J., Steinhauer D. A., Wiley D. C. Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. EMBO J. 1995 Jan 16;14(2):240–246. doi: 10.1002/j.1460-2075.1995.tb06997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White J. M., Wilson I. A. Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. J Cell Biol. 1987 Dec;105(6 Pt 2):2887–2896. doi: 10.1083/jcb.105.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wild C. T., Shugars D. C., Greenwell T. K., McDanal C. B., Matthews T. J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9770–9774. doi: 10.1073/pnas.91.21.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  45. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  46. Wintermeyer S. M., Nahata M. C. Rimantadine: a clinical perspective. Ann Pharmacother. 1995 Mar;29(3):299–310. doi: 10.1177/106002809502900312. [DOI] [PubMed] [Google Scholar]
  47. Woods J. M., Bethell R. C., Coates J. A., Healy N., Hiscox S. A., Pearson B. A., Ryan D. M., Ticehurst J., Tilling J., Walcott S. M. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother. 1993 Jul;37(7):1473–1479. doi: 10.1128/aac.37.7.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xu X., Rocha E. P., Regenery H. L., Kendal A. P., Cox N. J. Genetic and antigenic analyses of influenza A (H1N1) viruses, 1986-1991. Virus Res. 1993 Apr;28(1):37–55. doi: 10.1016/0168-1702(93)90088-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES