Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8821–8831. doi: 10.1128/jvi.71.11.8821-8831.1997

A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis.

H M Schätzl 1, L Laszlo 1, D M Holtzman 1, J Tatzelt 1, S J DeArmond 1, R I Weiner 1, W C Mobley 1, S B Prusiner 1
PMCID: PMC192348  PMID: 9343242

Abstract

Neuronal death and vacuolation are characteristics of the CNS degeneration found in prion diseases. Relatively few cultured cell lines have been identified that can be persistently infected with scrapie prions, and none of these cells show cytopathologic changes reminiscent of prion neuropathology. The differentiated neuronal cell line GT1, established from gonadotropin hormone releasing-hormone neurons immortalized by genetically targeted tumorigenesis in transgenic mice (P. L. Mellon, JJ. Windle, P. C. Goldsmith, C. A. Padula, J. L. Roberts, and R. I. Weiner, Neuron 5:1-10, 1990), was examined for its ability to support prion formation. We found that GT1 cells could be persistently infected with mouse RML prions and that conditioned medium from infected cells could transfer prions to uninfected cells. In many but not all experiments, a subpopulation of cells showed reduced viability, morphological signs of neurodegeneration and vacuolation, and features of apoptosis. Subclones of GT1 cells that were stably transfected with the trk4 gene encoding the high-affinity nerve growth factor (NGF) receptor (GT1-trk) could also be persistently infected. NGF increased the viability of the scrapie-infected GT1-trk cells and reduced the morphological and biochemical signs of vacuolation and apoptosis. GT1 cells represent a novel system for studying the molecular mechanisms underlying prion infectivity and subsequent neurodegenerative changes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J. Programmed cell death: the paths to suicide. Trends Neurosci. 1992 Aug;15(8):278–280. doi: 10.1016/0166-2236(92)90076-k. [DOI] [PubMed] [Google Scholar]
  2. Arrigo A. P., Suhan J. P., Welch W. J. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988 Dec;8(12):5059–5071. doi: 10.1128/mcb.8.12.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borchelt D. R., Scott M., Taraboulos A., Stahl N., Prusiner S. B. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol. 1990 Mar;110(3):743–752. doi: 10.1083/jcb.110.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bracci-Laudiero L., Vigneti E., Iannicola C., Aloe L. NGF retards apoptosis in chick embryo bursal cell in vitro. Differentiation. 1993 Jun;53(2):61–66. doi: 10.1111/j.1432-0436.1993.tb00646.x. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R., Herms J., Kretzschmar H. A. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport. 1994 Oct 27;5(16):2057–2060. doi: 10.1097/00001756-199410270-00017. [DOI] [PubMed] [Google Scholar]
  6. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  7. Butler D. A., Scott M. R., Bockman J. M., Borchelt D. R., Taraboulos A., Hsiao K. K., Kingsbury D. T., Prusiner S. B. Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol. 1988 May;62(5):1558–1564. doi: 10.1128/jvi.62.5.1558-1564.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlson G. A., Goodman P. A., Lovett M., Taylor B. A., Marshall S. T., Peterson-Torchia M., Westaway D., Prusiner S. B. Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol Cell Biol. 1988 Dec;8(12):5528–5540. doi: 10.1128/mcb.8.12.5528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Caughey B., Race R. E., Ernst D., Buchmeier M. J., Chesebro B. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol. 1989 Jan;63(1):175–181. doi: 10.1128/jvi.63.1.175-181.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chazot G., Broussolle E., Lapras C. l., Blättler T., Aguzzi A., Kopp N. New variant of Creutzfeldt-Jakob disease in a 26-year-old French man. Lancet. 1996 Apr 27;347(9009):1181–1181. doi: 10.1016/s0140-6736(96)90638-8. [DOI] [PubMed] [Google Scholar]
  11. Clarke M. C., Millson G. C. Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature. 1976 May 13;261(5556):144–145. doi: 10.1038/261144a0. [DOI] [PubMed] [Google Scholar]
  12. Clarke P. G. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990;181(3):195–213. doi: 10.1007/BF00174615. [DOI] [PubMed] [Google Scholar]
  13. Edwards S. N., Tolkovsky A. M. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol. 1994 Feb;124(4):537–546. doi: 10.1083/jcb.124.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fairbairn D. W., Carnahan K. G., Thwaits R. N., Grigsby R. V., Holyoak G. R., O'Neill K. L. Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol Lett. 1994 Jan 15;115(2-3):341–346. doi: 10.1111/j.1574-6968.1994.tb06661.x. [DOI] [PubMed] [Google Scholar]
  15. Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., Tagliavini F. Neurotoxicity of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543–546. doi: 10.1038/362543a0. [DOI] [PubMed] [Google Scholar]
  16. Gaido M. L., Cidlowski J. A. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem. 1991 Oct 5;266(28):18580–18585. [PubMed] [Google Scholar]
  17. Gajdusek D. C. Unconventional viruses and the origin and disappearance of kuru. Science. 1977 Sep 2;197(4307):943–960. doi: 10.1126/science.142303. [DOI] [PubMed] [Google Scholar]
  18. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holtzman D. M., Li Y., Chen K., Gage F. H., Epstein C. J., Mobley W. C. Nerve growth factor reverses neuronal atrophy in a Down syndrome model of age-related neurodegeneration. Neurology. 1993 Dec;43(12):2668–2673. doi: 10.1212/wnl.43.12.2668. [DOI] [PubMed] [Google Scholar]
  20. Holtzman D. M., Li Y., Parada L. F., Kinsman S., Chen C. K., Valletta J. S., Zhou J., Long J. B., Mobley W. C. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron. 1992 Sep;9(3):465–478. doi: 10.1016/0896-6273(92)90184-f. [DOI] [PubMed] [Google Scholar]
  21. Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S., Ord T., Bredesen D. E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993 Nov 19;262(5137):1274–1277. doi: 10.1126/science.8235659. [DOI] [PubMed] [Google Scholar]
  22. Koh J. Y., Cotman C. W. Programmed cell death: its possible contribution to neurotoxicity mediated by calcium channel antagonists. Brain Res. 1992 Aug 7;587(2):233–240. doi: 10.1016/0006-8993(92)91002-v. [DOI] [PubMed] [Google Scholar]
  23. Kovács J., Fellinger E., Kárpáti P. A., Kovács A. L., László L. The turnover of autophagic vacuoles: evaluation by quantitative electron microscopy. Biomed Biochim Acta. 1986;45(11-12):1543–1547. [PubMed] [Google Scholar]
  24. Kristensson K., Feuerstein B., Taraboulos A., Hyun W. C., Prusiner S. B., DeArmond S. J. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology. 1993 Nov;43(11):2335–2341. doi: 10.1212/wnl.43.11.2335. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Laszlo L., Lowe J., Self T., Kenward N., Landon M., McBride T., Farquhar C., McConnell I., Brown J., Hope J. Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol. 1992 Apr;166(4):333–341. doi: 10.1002/path.1711660404. [DOI] [PubMed] [Google Scholar]
  27. Loo D. T., Copani A., Pike C. J., Whittemore E. R., Walencewicz A. J., Cotman C. W. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7951–7955. doi: 10.1073/pnas.90.17.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Markovits P., Dormont D., Delpech B., Court L., Latarjet R. Essais de propagation in vitro de l'agent scrapie dans des cellules nerveuses de souris. C R Seances Acad Sci III. 1981 Nov 2;293(8):413–417. [PubMed] [Google Scholar]
  29. Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., Johnson E. M., Jr Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988 Mar;106(3):829–844. doi: 10.1083/jcb.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martínez de la Escalera G., Choi A. L., Weiner R. I. Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1852–1855. doi: 10.1073/pnas.89.5.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
  32. Mobley W. C. Nerve growth factor in Alzheimer's disease: to treat or not to treat? Neurobiol Aging. 1989 Sep-Oct;10(5):578–590. doi: 10.1016/0197-4580(89)90135-8. [DOI] [PubMed] [Google Scholar]
  33. Newell M. K., Haughn L. J., Maroun C. R., Julius M. H. Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen. Nature. 1990 Sep 20;347(6290):286–289. doi: 10.1038/347286a0. [DOI] [PubMed] [Google Scholar]
  34. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pattison I. H., Jones K. M. Modification of a strain of mouse-adapted scrapie by passage through rats. Res Vet Sci. 1968 Sep;9(5):408–410. [PubMed] [Google Scholar]
  36. Pittman R. N., Mills J. C., DiBenedetto A. J., Hynicka W. P., Wang S. Neuronal cell death: searching for the smoking gun. Curr Opin Neurobiol. 1994 Feb;4(1):87–94. doi: 10.1016/0959-4388(94)90036-1. [DOI] [PubMed] [Google Scholar]
  37. Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., Glenner G. G. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983 Dec;35(2 Pt 1):349–358. doi: 10.1016/0092-8674(83)90168-x. [DOI] [PubMed] [Google Scholar]
  38. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  39. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  40. Race R. E., Fadness L. H., Chesebro B. Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol. 1987 May;68(Pt 5):1391–1399. doi: 10.1099/0022-1317-68-5-1391. [DOI] [PubMed] [Google Scholar]
  41. Raff M. C. Social controls on cell survival and cell death. Nature. 1992 Apr 2;356(6368):397–400. doi: 10.1038/356397a0. [DOI] [PubMed] [Google Scholar]
  42. Rubenstein R., Carp R. I., Callahan S. M. In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol. 1984 Dec;65(Pt 12):2191–2198. doi: 10.1099/0022-1317-65-12-2191. [DOI] [PubMed] [Google Scholar]
  43. Rubenstein R., Deng H., Race R. E., Ju W., Scalici C. L., Papini M. C., Kascsak R. J., Carp R. I. Demonstration of scrapie strain diversity in infected PC12 cells. J Gen Virol. 1992 Nov;73(Pt 11):3027–3031. doi: 10.1099/0022-1317-73-11-3027. [DOI] [PubMed] [Google Scholar]
  44. Rubenstein R., Deng H., Scalici C. L., Papini M. C. Alterations in neurotransmitter-related enzyme activity in scrapie-infected PC12 cells. J Gen Virol. 1991 Jun;72(Pt 6):1279–1285. doi: 10.1099/0022-1317-72-6-1279. [DOI] [PubMed] [Google Scholar]
  45. Schwanzel-Fukuda M., Pfaff D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989 Mar 9;338(6211):161–164. doi: 10.1038/338161a0. [DOI] [PubMed] [Google Scholar]
  46. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  47. Schätzl H. M., von der Helm K. V-sis gene (SSV) is expressed transiently and independently of v-gag (SSAV) after infection of fibroblasts with SSV/SSAV. Oncogene. 1989 Sep;4(9):1095–1101. [PubMed] [Google Scholar]
  48. Serban D., Taraboulos A., DeArmond S. J., Prusiner S. B. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology. 1990 Jan;40(1):110–117. doi: 10.1212/wnl.40.1.110. [DOI] [PubMed] [Google Scholar]
  49. Shimohama S., Ogawa N., Tamura Y., Akaike A., Tsukahara T., Iwata H., Kimura J. Protective effect of nerve growth factor against glutamate-induced neurotoxicity in cultured cortical neurons. Brain Res. 1993 Dec 31;632(1-2):296–302. doi: 10.1016/0006-8993(93)91164-n. [DOI] [PubMed] [Google Scholar]
  50. Sparkes R. S., Simon M., Cohn V. H., Fournier R. E., Lem J., Klisak I., Heinzmann C., Blatt C., Lucero M., Mohandas T. Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7358–7362. doi: 10.1073/pnas.83.19.7358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stahl N., Borchelt D. R., Hsiao K., Prusiner S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987 Oct 23;51(2):229–240. doi: 10.1016/0092-8674(87)90150-4. [DOI] [PubMed] [Google Scholar]
  52. Taraboulos A., Jendroska K., Serban D., Yang S. L., DeArmond S. J., Prusiner S. B. Regional mapping of prion proteins in brain. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7620–7624. doi: 10.1073/pnas.89.16.7620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Taraboulos A., Raeber A. J., Borchelt D. R., Serban D., Prusiner S. B. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell. 1992 Aug;3(8):851–863. doi: 10.1091/mbc.3.8.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Taraboulos A., Rogers M., Borchelt D. R., McKinley M. P., Scott M., Serban D., Prusiner S. B. Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8262–8266. doi: 10.1073/pnas.87.21.8262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Taraboulos A., Serban D., Prusiner S. B. Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol. 1990 Jun;110(6):2117–2132. doi: 10.1083/jcb.110.6.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tatzelt J., Zuo J., Voellmy R., Scott M., Hartl U., Prusiner S. B., Welch W. J. Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2944–2948. doi: 10.1073/pnas.92.7.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vaux D. L., Haecker G., Strasser A. An evolutionary perspective on apoptosis. Cell. 1994 Mar 11;76(5):777–779. doi: 10.1016/0092-8674(94)90350-6. [DOI] [PubMed] [Google Scholar]
  58. Welch W. J., Suhan J. P. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol. 1986 Nov;103(5):2035–2052. doi: 10.1083/jcb.103.5.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wetsel W. C., Valença M. M., Merchenthaler I., Liposits Z., López F. J., Weiner R. I., Mellon P. L., Negro-Vilar A. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4149–4153. doi: 10.1073/pnas.89.9.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Will R. G., Ironside J. W., Zeidler M., Cousens S. N., Estibeiro K., Alperovitch A., Poser S., Pocchiari M., Hofman A., Smith P. G. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet. 1996 Apr 6;347(9006):921–925. doi: 10.1016/s0140-6736(96)91412-9. [DOI] [PubMed] [Google Scholar]
  61. Wong K., Qiu Y., Hyun W., Nixon R., VanCleff J., Sanchez-Salazar J., Prusiner S. B., DeArmond S. J. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology. 1996 Sep;47(3):741–750. doi: 10.1212/wnl.47.3.741. [DOI] [PubMed] [Google Scholar]
  62. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  63. Zhou J., Holtzman D. M., Weiner R. I., Mobley W. C. Expression of TrkA confers neuron-like responsiveness to nerve growth factor on an immortalized hypothalamic cell line. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3824–3828. doi: 10.1073/pnas.91.9.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES