Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Nov;37(11):2255–2260. doi: 10.1128/aac.37.11.2255

Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium.

M Vaara 1
PMCID: PMC192375  PMID: 8285603

Full text

PDF
2255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beall B., Lutkenhaus J. Sequence analysis, transcriptional organization, and insertional mutagenesis of the envA gene of Escherichia coli. J Bacteriol. 1987 Dec;169(12):5408–5415. doi: 10.1128/jb.169.12.5408-5415.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boman H. G., Nordström K., Normark S. Penicillin resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Ann N Y Acad Sci. 1974 May 10;235(0):569–586. doi: 10.1111/j.1749-6632.1974.tb43291.x. [DOI] [PubMed] [Google Scholar]
  4. Buxton R. S., Drury L. S., Curtis C. A. Dye sensitivity correlated with envelope protein changes in dye (sfrA) mutants of Escherichia coli K12 defective in the expression of the sex factor F. J Gen Microbiol. 1983 Nov;129(11):3363–3370. doi: 10.1099/00221287-129-11-3363. [DOI] [PubMed] [Google Scholar]
  5. Chakraborti A. S., Ishidate K., Cook W. R., Zrike J., Rothfield L. I. Accumulation of a murein-membrane attachment site fraction when cell division is blocked in lkyD and cha mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1986 Dec;168(3):1422–1429. doi: 10.1128/jb.168.3.1422-1429.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coleman J., Raetz C. R. First committed step of lipid A biosynthesis in Escherichia coli: sequence of the lpxA gene. J Bacteriol. 1988 Mar;170(3):1268–1274. doi: 10.1128/jb.170.3.1268-1274.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coleman W. G., Jr, Leive L. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol. 1979 Sep;139(3):899–910. doi: 10.1128/jb.139.3.899-910.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dicker I. B., Seetharam S. Cloning and nucleotide sequence of the firA gene and the firA200(Ts) allele from Escherichia coli. J Bacteriol. 1991 Jan;173(1):334–344. doi: 10.1128/jb.173.1.334-344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dicker I. B., Seetharam S. What is known about the structure and function of the Escherichia coli protein FirA? Mol Microbiol. 1992 Apr;6(7):817–823. doi: 10.1111/j.1365-2958.1992.tb01532.x. [DOI] [PubMed] [Google Scholar]
  10. Fernandes P. B., Swanson R. N., Hardy D. J., Hanson C. W., Coen L., Rasmussen R. R., Chen R. H. Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. III. Microbiologic profile. J Antibiot (Tokyo) 1989 Apr;42(4):521–526. doi: 10.7164/antibiotics.42.521. [DOI] [PubMed] [Google Scholar]
  11. Galloway S. M., Raetz C. R. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J Biol Chem. 1990 Apr 15;265(11):6394–6402. [PubMed] [Google Scholar]
  12. Helander I. M., Hirvas L., Tuominen J., Vaara M. Preferential synthesis of heptaacyl lipopolysaccharide by the ssc permeability mutant of Salmonella typhimurium. Eur J Biochem. 1992 Mar 15;204(3):1101–1106. doi: 10.1111/j.1432-1033.1992.tb16734.x. [DOI] [PubMed] [Google Scholar]
  13. Helander I. M., Lindner B., Seydel U., Vaara M. Defective biosynthesis of the lipid A component of temperature-sensitive firA (omsA) mutant of Escherichia coli. Eur J Biochem. 1993 Mar 1;212(2):363–369. doi: 10.1111/j.1432-1033.1993.tb17670.x. [DOI] [PubMed] [Google Scholar]
  14. Helander I. M., Vaara M., Sukupolvi S., Rhen M., Saarela S., Zähringer U., Mäkelä P. H. rfaP mutants of Salmonella typhimurium. Eur J Biochem. 1989 Nov 20;185(3):541–546. doi: 10.1111/j.1432-1033.1989.tb15147.x. [DOI] [PubMed] [Google Scholar]
  15. Hirvas L., Coleman J., Koski P., Vaara M. Bacterial 'histone-like protein I' (HLP-I) is an outer membrane constituent? FEBS Lett. 1990 Mar 12;262(1):123–126. doi: 10.1016/0014-5793(90)80169-j. [DOI] [PubMed] [Google Scholar]
  16. Hirvas L., Koski P., Vaara M. Identification and sequence analysis of the gene mutated in the conditionally lethal outer membrane permeability mutant SS-C of Salmonella typhimurium. EMBO J. 1991 Apr;10(4):1017–1023. doi: 10.1002/j.1460-2075.1991.tb08036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirvas L., Koski P., Vaara M. Primary structure and expression of the Ssc-protein of Salmonella typhimurium. Biochem Biophys Res Commun. 1990 Nov 30;173(1):53–59. doi: 10.1016/s0006-291x(05)81020-4. [DOI] [PubMed] [Google Scholar]
  18. Hirvas L., Koski P., Vaara M. The ompH gene of Yersinia enterocolitica: cloning, sequencing, expression, and comparison with known enterobacterial ompH sequences. J Bacteriol. 1991 Feb;173(3):1223–1229. doi: 10.1128/jb.173.3.1223-1229.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hirvas L., Vaara M. Effect of Ssc protein mutations on the outer membrane permeability barrier function in Salmonella typhimurium: a study using ssc mutant alleles made by site-directed mutagenesis. FEMS Microbiol Lett. 1992 Jan 15;69(3):289–294. doi: 10.1016/0378-1097(92)90662-8. [DOI] [PubMed] [Google Scholar]
  20. Kamio Y., Nikaido H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry. 1976 Jun 15;15(12):2561–2570. doi: 10.1021/bi00657a012. [DOI] [PubMed] [Google Scholar]
  21. Klein J. R., Plapp R. Locations of the envCD genes on the physical map of the Escherichia coli chromosome. J Bacteriol. 1992 Jun;174(11):3828–3829. doi: 10.1128/jb.174.11.3828-3829.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koski P., Rhen M., Kantele J., Vaara M. Isolation, cloning, and primary structure of a cationic 16-kDa outer membrane protein of Salmonella typhimurium. J Biol Chem. 1989 Nov 15;264(32):18973–18980. [PubMed] [Google Scholar]
  23. Koski P., Vaara M. Polyamines as constituents of the outer membranes of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1991 Jun;173(12):3695–3699. doi: 10.1128/jb.173.12.3695-3699.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lathe R., Buc H., Lecocq J. P., Bautz E. K. Prokaryotic histone-like protein interacting with RNA polymerase. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3548–3552. doi: 10.1073/pnas.77.6.3548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lathe R. Fine-structure mapping of the firA gene, a locus involved in the phenotypic expression of rifampin resistance in Escherichia. J Bacteriol. 1977 Sep;131(3):1033–1036. doi: 10.1128/jb.131.3.1033-1036.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leive L., Telesetsky S., Coleman W. G., Jr, Carr D. Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membranes. Antimicrob Agents Chemother. 1984 May;25(5):539–544. doi: 10.1128/aac.25.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nikaido H., Nakae T. The outer membrane of Gram-negative bacteria. Adv Microb Physiol. 1979;20:163–250. doi: 10.1016/s0065-2911(08)60208-8. [DOI] [PubMed] [Google Scholar]
  28. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother. 1989 Nov;33(11):1831–1836. doi: 10.1128/aac.33.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nikaido H. Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta. 1976 Apr 16;433(1):118–132. doi: 10.1016/0005-2736(76)90182-6. [DOI] [PubMed] [Google Scholar]
  30. Nikaido H. Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther. 1985;27(2):197–231. doi: 10.1016/0163-7258(85)90069-5. [DOI] [PubMed] [Google Scholar]
  31. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oppezzo O. J., Avanzati B., Antón D. N. Increased susceptibility to beta-lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium. Antimicrob Agents Chemother. 1991 Jun;35(6):1203–1207. doi: 10.1128/aac.35.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parker C. T., Kloser A. W., Schnaitman C. A., Stein M. A., Gottesman S., Gibson B. W. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol. 1992 Apr;174(8):2525–2538. doi: 10.1128/jb.174.8.2525-2538.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paul S., Chaudhuri K., Chatterjee A. N., Das J. Presence of exposed phospholipids in the outer membrane of Vibrio cholerae. J Gen Microbiol. 1992 Apr;138(4):755–761. doi: 10.1099/00221287-138-4-755. [DOI] [PubMed] [Google Scholar]
  35. Plésiat P., Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol. 1992 May;6(10):1323–1333. doi: 10.1111/j.1365-2958.1992.tb00853.x. [DOI] [PubMed] [Google Scholar]
  36. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  37. Roantree R. J., Kuo T. T., MacPhee D. G. The effect of defined lipopolysaccharide core defects upon antibiotic resistances of Salmonella typhimurium. J Gen Microbiol. 1977 Dec;103(2):223–234. doi: 10.1099/00221287-103-2-223. [DOI] [PubMed] [Google Scholar]
  38. Sampson B. A., Misra R., Benson S. A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics. 1989 Jul;122(3):491–501. doi: 10.1093/genetics/122.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sen K., Nikaido H. Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin. J Bacteriol. 1991 Jan;173(2):926–928. doi: 10.1128/jb.173.2.926-928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sen K., Nikaido H. Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. J Biol Chem. 1991 Jun 15;266(17):11295–11300. [PubMed] [Google Scholar]
  41. Shlaes D. M., Shlaes J. H., Davies J., Williamson R. Escherichia coli susceptible to glycopeptide antibiotics. Antimicrob Agents Chemother. 1989 Feb;33(2):192–197. doi: 10.1128/aac.33.2.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Silverman P. M., Rother S., Gaudin H. Arc and Sfr functions of the Escherichia coli K-12 arcA gene product are genetically and physiologically separable. J Bacteriol. 1991 Sep;173(18):5648–5652. doi: 10.1128/jb.173.18.5648-5652.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sukupolvi S., O'Connor C. D. TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev. 1990 Dec;54(4):331–341. doi: 10.1128/mr.54.4.331-341.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sukupolvi S., Vaara M., Helander I. M., Viljanen P., Mäkelä P. H. New Salmonella typhimurium mutants with altered outer membrane permeability. J Bacteriol. 1984 Aug;159(2):704–712. doi: 10.1128/jb.159.2.704-712.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sukupolvi S., Vaara M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. Biochim Biophys Acta. 1989 Dec 6;988(3):377–387. doi: 10.1016/0304-4157(89)90011-7. [DOI] [PubMed] [Google Scholar]
  46. Tamaki S., Sato T., Matsuhashi M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J Bacteriol. 1971 Mar;105(3):968–975. doi: 10.1128/jb.105.3.968-975.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsuruoka T., Ito M., Tomioka S., Hirata A., Matsuhashi M. Thermosensitive omsA mutation of Escherichia coli that causes thermoregulated release of periplasmic proteins. J Bacteriol. 1988 Nov;170(11):5229–5235. doi: 10.1128/jb.170.11.5229-5235.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992 Sep;56(3):395–411. doi: 10.1128/mr.56.3.395-411.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vaara M. Antimicrobial susceptibility of Salmonella typhimurium carrying the outer membrane permeability mutation SS-B. Antimicrob Agents Chemother. 1990 May;34(5):853–857. doi: 10.1128/aac.34.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vaara M. Comparative activity of rifabutin and rifampicin against gram-negative bacteria that have damaged or defective outer membranes. J Antimicrob Chemother. 1993 May;31(5):799–801. doi: 10.1093/jac/31.5.799-a. [DOI] [PubMed] [Google Scholar]
  51. Vaara M. Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme. FEMS Microbiol Lett. 1992 Oct 15;76(3):249–254. doi: 10.1016/0378-1097(92)90344-n. [DOI] [PubMed] [Google Scholar]
  52. Vaara M. Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):354–356. doi: 10.1128/aac.37.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vaara M., Plachy W. Z., Nikaido H. Partitioning of hydrophobic probes into lipopolysaccharide bilayers. Biochim Biophys Acta. 1990 May 9;1024(1):152–158. doi: 10.1016/0005-2736(90)90218-d. [DOI] [PubMed] [Google Scholar]
  54. Vaara M. Quantitative antimicrobial susceptibility testing of outer membrane-altered mutant bacteria by the E test. J Antimicrob Chemother. 1993 Jan;31(1):171–173. doi: 10.1093/jac/31.1.171-a. [DOI] [PubMed] [Google Scholar]
  55. Vuorio R., Hirvas L., Vaara M. The Ssc protein of enteric bacteria has significant homology to the acyltransferase Lpxa of lipid A biosynthesis, and to three acetyltransferases. FEBS Lett. 1991 Nov 4;292(1-2):90–94. doi: 10.1016/0014-5793(91)80841-p. [DOI] [PubMed] [Google Scholar]
  56. Vuorio R., Vaara M. Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA. J Bacteriol. 1992 Nov;174(22):7090–7097. doi: 10.1128/jb.174.22.7090-7097.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vuorio R., Vaara M. The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility. Antimicrob Agents Chemother. 1992 Apr;36(4):826–829. doi: 10.1128/aac.36.4.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wachi M., Matsuhashi M. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J Bacteriol. 1989 Jun;171(6):3123–3127. doi: 10.1128/jb.171.6.3123-3127.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Young K., Silver L. L. Leakage of periplasmic enzymes from envA1 strains of Escherichia coli. J Bacteriol. 1991 Jun;173(12):3609–3614. doi: 10.1128/jb.173.12.3609-3614.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. de Boer P. A., Cook W. R., Rothfield L. I. Bacterial cell division. Annu Rev Genet. 1990;24:249–274. doi: 10.1146/annurev.ge.24.120190.001341. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES