Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Sep;36(9):2054–2056. doi: 10.1128/aac.36.9.2054

Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin.

B D Hoyle 1, J Alcantara 1, J W Costerton 1
PMCID: PMC192438  PMID: 1416900

Abstract

Pseudomonas aeruginosa 579 biofilms formed on dialysis membranes retarded piperacillin diffusion. Treatment of biofilms with 5.0 mM CaCl2.2H2O prevented diffusion. Biofilms permitted equilibration of [14C]glucose. Thin-layer chromatography of fluids distal to untreated (viable and nonviable) and viable Ca(2+)-treated P. aeruginosa 579 biofilms and fluids distal to a viable P. aeruginosa mutant noninducible for the expression of beta-lactamase did not detect piperacillinoic acid.

Full text

PDF
2054

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. R., Allison D. G., Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother. 1988 Dec;22(6):777–780. doi: 10.1093/jac/22.6.777. [DOI] [PubMed] [Google Scholar]
  2. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  3. Giwercman B., Jensen E. T., Høiby N., Kharazmi A., Costerton J. W. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother. 1991 May;35(5):1008–1010. doi: 10.1128/aac.35.5.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gordon C. A., Hodges N. A., Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother. 1988 Nov;22(5):667–674. doi: 10.1093/jac/22.5.667. [DOI] [PubMed] [Google Scholar]
  5. Govan J. R., Fyfe J. A. Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother. 1978 May;4(3):233–240. doi: 10.1093/jac/4.3.233. [DOI] [PubMed] [Google Scholar]
  6. Hoyle B. D., Costerton J. W. Transient exposure to a physiologically-relevant concentration of calcium confers tobramycin resistance upon sessile cells of Pseudomonas aeruginosa. FEMS Microbiol Lett. 1989 Aug;51(3):339–341. doi: 10.1016/0378-1097(89)90421-7. [DOI] [PubMed] [Google Scholar]
  7. Hoyle B. D., Jass J., Costerton J. W. The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother. 1990 Jul;26(1):1–5. doi: 10.1093/jac/26.1.1. [DOI] [PubMed] [Google Scholar]
  8. Lam J., Chan R., Lam K., Costerton J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980 May;28(2):546–556. doi: 10.1128/iai.28.2.546-556.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawrence J. R., Korber D. R., Hoyle B. D., Costerton J. W., Caldwell D. E. Optical sectioning of microbial biofilms. J Bacteriol. 1991 Oct;173(20):6558–6567. doi: 10.1128/jb.173.20.6558-6567.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nichols W. W., Dorrington S. M., Slack M. P., Walmsley H. L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988 Apr;32(4):518–523. doi: 10.1128/aac.32.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nichols W. W., Evans M. J., Slack M. P., Walmsley H. L. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989 May;135(5):1291–1303. doi: 10.1099/00221287-135-5-1291. [DOI] [PubMed] [Google Scholar]
  12. Nickel J. C., Ruseska I., Wright J. B., Costerton J. W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985 Apr;27(4):619–624. doi: 10.1128/aac.27.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pier G. B. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J Infect Dis. 1985 Apr;151(4):575–580. doi: 10.1093/infdis/151.4.575. [DOI] [PubMed] [Google Scholar]
  14. Prosser B. L., Taylor D., Dix B. A., Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987 Oct;31(10):1502–1506. doi: 10.1128/aac.31.10.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Russell N. J., Gacesa P. Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol Aspects Med. 1988;10(1):1–91. doi: 10.1016/0098-2997(88)90002-7. [DOI] [PubMed] [Google Scholar]
  16. Slack M. P., Nichols W. W. The penetration of antibiotics through sodium alginate and through the exopolysaccharide of a mucoid strain of Pseudomonas aeruginosa. Lancet. 1981 Sep 5;2(8245):502–503. doi: 10.1016/s0140-6736(81)90885-0. [DOI] [PubMed] [Google Scholar]
  17. Tannenbaum C. S., Hastie A. T., Higgins M. L., Kueppers F., Weinbaum G. Inability of purified Pseudomonas aeruginosa exopolysaccharide to bind selected antibiotics. Antimicrob Agents Chemother. 1984 Jun;25(6):673–675. doi: 10.1128/aac.25.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES