Abstract
The 8.8-kb amplifiable unit of DNA of Streptomyces achromogenes subsp. rubradiris, AUD-Sar 1, which carries 0.8-kb terminal direct repeats and a spectinomycin resistance determinant, can mediate high-level amplification of an AUD-Sar 1-derived 8.0-kb DNA sequence not only in S. achromogenes but also in the heterologous host Streptomyces lividans. This was seen upon introduction of AUD-Sar 1 into chloramphenicol-sensitive strains of S. lividans via the temperature-sensitive (39 degrees C) plasmid pMT660, which contains the thiostrepton resistance gene tsr. Following the cultivation of transformants at 39 degrees C on media containing spectinomycin, a number of strains which were unable to grow on thiostrepton and which carried the amplified 8.0-kb DNA sequence as arrays of 200 to 300 copies of tandem 8.0-kb repeats were found. Chloramphenicol-resistant strains of S. lividans did not yield amplified sequences under similar conditions. Studies with plasmids carrying inserted antibiotic resistance genes at two sites of AUD-Sar 1 yielded coamplified sequences which contain the inserted DNA. Transformation with a plasmid carrying a 1.0-kb deletion in AUD-Sar 1 followed by growth under similar conditions yielded a 7.0-kb repeated DNA sequence. Southern analysis revealed the absence of vector sequences located on the right side of AUD-Sar 1 in the input plasmids in all examined DNA samples of amplified strains. In contrast, a majority of the samples revealed the presence at unit copy level of AUD-Sar 1 left-adjacent sequences which are part of the input plasmids and in several samples the presence of certain vector sequences located near them. The results suggest input plasmid integration into the S. lividans chromosome prior to the generation of the amplified sequences and the deletion of AUD-Sar 1 adjacent sequences.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenbuchner J., Cullum J. Structure of an amplifiable DNA sequence in Streptomyces lividans 66. Mol Gen Genet. 1985;201(2):192–197. doi: 10.1007/BF00425659. [DOI] [PubMed] [Google Scholar]
- Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. doi: 10.1146/annurev.mi.31.100177.002353. [DOI] [PubMed] [Google Scholar]
- Bibb M. J., Janssen G. R., Ward J. M. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene. 1985;38(1-3):215–226. doi: 10.1016/0378-1119(85)90220-3. [DOI] [PubMed] [Google Scholar]
- Birch A. W., Cullum J. Temperature-sensitive mutants of the Streptomyces plasmid pIJ702. J Gen Microbiol. 1985 Jun;131(6):1299–1303. doi: 10.1099/00221287-131-6-1299. [DOI] [PubMed] [Google Scholar]
- Birch A., Häusler A., Rüttener C., Hütter R. Chromosomal deletion and rearrangement in Streptomyces glaucescens. J Bacteriol. 1991 Jun;173(11):3531–3538. doi: 10.1128/jb.173.11.3531-3538.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung S. T. Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae. J Bacteriol. 1987 Oct;169(10):4436–4441. doi: 10.1128/jb.169.10.4436-4441.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dittrich W., Betzler M., Schrempf H. An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol Microbiol. 1991 Nov;5(11):2789–2797. doi: 10.1111/j.1365-2958.1991.tb01987.x. [DOI] [PubMed] [Google Scholar]
- Dyson P., Schrempf H. Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol. 1987 Oct;169(10):4796–4803. doi: 10.1128/jb.169.10.4796-4803.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimoto Y., Imamura A., Iyeiri C., Shoji S., Kubota Y., Shibata M. Features of regenerated clones with or without fusion treatment between auxotrophic mutants of Streptomyces antibioticus and their antibiotic productivity. Agric Biol Chem. 1990 Nov;54(11):2855–2861. [PubMed] [Google Scholar]
- HATA T., HOSHI T., KANAMORI K., MATSUMAE A., SANO Y., SHIMA T., SUGAWARA R. Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot (Tokyo) 1956 Jul;9(4):141–146. [PubMed] [Google Scholar]
- HICKEY R. J., TRESNER H. D. A cobalt-containing medium for sporulation of Streptomyces species. J Bacteriol. 1952 Dec;64(6):891–892. doi: 10.1128/jb.64.6.891-892.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornemann U., Otto C. J., Hoffman G. G., Bertinuson A. C. Spectinomycin resistance and associated DNA amplification in Streptomyces achromogenes subsp. rubradiris. J Bacteriol. 1987 Jun;169(6):2360–2366. doi: 10.1128/jb.169.6.2360-2366.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornemann U., Otto C. J., Zhang X. Y. DNA amplification in Streptomyces achromogenes subsp. rubradiris is accompanied by a deletion, and the amplified sequences are conditionally stable and can be eliminated by two pathways. J Bacteriol. 1989 Nov;171(11):5817–5822. doi: 10.1128/jb.171.11.5817-5822.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser P., Flett F., Cullum J. Stabilization of Streptomyces lividans by homologous recombinational insertion. Biotechnology (N Y) 1992 May;10(5):570–573. doi: 10.1038/nbt0592-570. [DOI] [PubMed] [Google Scholar]
- Leblond P., Demuyter P., Simonet J. M., Decaris B. Genetic instability and associated genome plasticity in Streptomyces ambofaciens: pulsed-field gel electrophoresis evidence for large DNA alterations in a limited genomic region. J Bacteriol. 1991 Jul;173(13):4229–4233. doi: 10.1128/jb.173.13.4229-4233.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leblond P., Demuyter P., Simonet J. M., Decaris B. Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity. Mol Microbiol. 1990 May;4(5):707–714. doi: 10.1111/j.1365-2958.1990.tb00641.x. [DOI] [PubMed] [Google Scholar]
- MacNeil T., Gibbons P. H. Characterization of the Streptomyces plasmid pVE1. Plasmid. 1986 Nov;16(3):182–194. doi: 10.1016/0147-619x(86)90056-9. [DOI] [PubMed] [Google Scholar]
- Schottel J. L., Bibb M. J., Cohen S. N. Cloning and expression in streptomyces lividans of antibiotic resistance genes derived from Escherichia coli. J Bacteriol. 1981 Apr;146(1):360–368. doi: 10.1128/jb.146.1.360-368.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stark G. R., Wahl G. M. Gene amplification. Annu Rev Biochem. 1984;53:447–491. doi: 10.1146/annurev.bi.53.070184.002311. [DOI] [PubMed] [Google Scholar]
- Tlsty T. D. Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3132–3136. doi: 10.1073/pnas.87.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet. 1986 Jun;203(3):468–478. doi: 10.1007/BF00422072. [DOI] [PubMed] [Google Scholar]
- Wright J. A., Smith H. S., Watt F. M., Hancock M. C., Hudson D. L., Stark G. R. DNA amplification is rare in normal human cells. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1791–1795. doi: 10.1073/pnas.87.5.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Young M., Cullum J. A plausible mechanism for large-scale chromosomal DNA amplification in streptomycetes. FEBS Lett. 1987 Feb 9;212(1):10–14. doi: 10.1016/0014-5793(87)81547-8. [DOI] [PubMed] [Google Scholar]



