Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2007 Aug 14.
Published in final edited form as: J Ultrasound Med. 2000 Feb;19(2):149–168. doi: 10.7863/jum.2000.19.2.149

Section 8—Clinical Relevance

PMCID: PMC1948841  NIHMSID: NIHMS23666  PMID: 10680620

This final section addresses the clinical implications of the nonthermal (mechanical) bioeffects of diagnostic ultrasound. As previously defined in Section 2, bioeffects are assumed to be mechanical when the temperature rise at the site of a biologic effect is < 1°C. An important source of mechanical bioeffects in biological tissues is believed to be acoustic cavitation. Acoustic cavitation may be defined as the interaction between a stabilized gas pocket (microbubbles) and an applied acoustic field, resulting in either transient (inertial) or stable cavitation. Gas bodies may occur naturally, as in the lung and intestine, may be induced from preexisting nuclei in tissues subjected to an appropriate acoustic pressure (renal effects of lithotripsy), or may be exogenously introduced as contrast agents.

8.1 Clinical Relevance: Mechanical Bioeffects in Tissues Known to Have Naturally Occurring Gas Bodies

From a clinical relevance perspective, the first obvious question is whether diagnostic ultrasound systems can generate specific ultrasound quantities known to reliably produce mechanical bioeffects in biological tissues. A number of investigators have theoretically suggested the generation of transient cavities in liquids by microsecond pulses of clinically relevant ultrasound (Flynn, 1982; Apfel, 1982), whereas others have experimentally demonstrated evidence for ultrasonically induced cavitation both in vitro and in vivo at peak acoustic negative pressures less than those found in some diagnostic ultrasound equipment (ter Haar and Daniels, 1981; Fowlkes and Crum, 1988; Roy et al, 1990; Holland et al, 1996).

The second obvious question is whether there are tissues or tissue conditions in the human fetus, neonate, child, or adult that make them susceptible to these known mechanical bioeffects produced by diagnostic ultrasound systems. There are only two organ systems in humans known to have naturally occurring stabilized gas pockets—the lung and the intestine. This is true after birth only because in the human fetal state (as is true for all mammals), the lung and intestine are both fluid filled. Although to date, there are no clinical or experimental mechanical bioeffects data available for human lung or intestine (exclusive of incidental extracorporeal shockwave lithotripsy anecdotal data), a number of investigators have clearly demonstrated the occurrence of lung hemorrhage in a variety of mammalian models, as well as hemorrhage in mouse intestine from diagnostic ultrasound (Child et al, 1990; Zachary and O’Brien, 1995; Holland et al, 1996). Bioeffects in tissues with naturally occurring gas bodies are extensively reviewed in Section 4 together with a discussion of the theoretical basis for their occurrence and available experimental proof.

Several additional questions can be posed if the answer to the previous two questions is in the affirmative. The first is whether such a mechanical bioeffect always occurs in susceptible tissue(s) when they are exposed to diagnostic ultrasound. Another question is whether susceptibility varies with fetal state. A third question is whether neonatal tissues are more susceptible than adult tissues, i.e., does susceptibility to mechanical bioeffects decline with advancing age after birth? Tissue properties that may serve as potential determinants of susceptibility to the mechanical (cavitational and noncavitational) bioeffects of diagnostic ultrasound are discussed in detail in Section 3. Incidental or deliberate exposure of the human lung occurs during a variety of specific ultrasound examinations, including routine and transesophageal echocardiography and chest wall, pleural space, diaphragm, and lung parenchymal evaluations; the intestine, however, is always exposed whenever an abdominal organ is examined and during most obstetrical and gynecologic studies. Using a variety of experimental models, a number of investigators have shown that the threshold acoustic pressure for lung hemorrhage across species is 1 MPa (Mechanical Index [MI] 0.5) with a weak correlation with frequency, pulse length, and total exposure time (Section 4) (Child et al, 1990; Raeman et al, 1996). At the present time, data are inconsistent as to whether there are age or species differences in the thresholds for lung hemorrhage, although animals may be grouped into those species with “thin” visceral pleura (mice, rats, rabbit, cats, dogs, and monkeys), which are more susceptible to lung hemorrhage, versus species with “thick” visceral pleura (sheep, pigs, humans, cattle, and horses) who may be relatively protected from mechanical bioeffects, as discussed in Section 3 (Frizzell et al, 1994; Zachary and O’Brien, 1995; Baggs et al, 1996; O’Brien and Zachary, 1996; Dalecki et al, 1997b, 1997a). Similarly, the threshold acoustic pressure for intestinal hemorrhage in the mouse is 2 MPa at 1 MHz as reported by a number of investigators (Miller and Thomas, 1994; Raeman et al, 1994; Dalecki et al, 1995a, 1995c). These data are discussed in detail in Section 4 for the interested clinical reader.

The fourth and fifth conditions that need to be met for clinical relevance are whether these mechanical bioeffects pose any biohazard and, if so, whether the biohazard is such that it outweighs the benefits of the information gained from the diagnostic ultrasound examination. In general, in all species studied, the focus of lung hemorrhage is always related to a pleural surface irrespective of the size of the hemorrhage that then appears to spread to a varying depth into lung parenchyma 2–4 mm. However, there are reports of hemorrhage seen in the contralateral lung (Tarantal and Canfield, 1994; Zachary and O’Brien, 1995; Holland et al, 1996). The results of various laboratory investigations of the microscopic location and possible pathogenesis of lung hemorrhage in published models are summarized in Section 3. When the physical properties of the human lung, including morphology and volume, are compared with the physical properties of the murine lung (the most commonly studied animal model for diagnostic ultrasound induced lung hemorrhage), it is intuitively apparent that the likelihood of any, much less clinically significant, lung hemorrhage during a routine diagnostic ultrasound examination is highly unlikely if not extremely improbable (O’Brien and Zachary, 1996). There are two specific theoretical situations in which the potential for lung hemorrhage exists during a clinical ultrasound examination. These are transesophageal echocardiography at any age and transthoracic echocardiography in the premature neonate, especially in the presence of exogenously administered surfactant (Stevenson et al, 1992; Tarantal, private communication; Holland et al, 1996). There are no data available, however, to support an increased rate of pulmonary hemorrhage even in these two potential high-risk conditions. In the case of the intestine, as noted, data are restricted to the murine model, in which the hemorrhagic lesions have always been noted to be submucosal, mucosal, and otherwise restricted to the lumen without any evidence of free blood in the peritoneal cavity. Although any segment of the intestine may potentially be exposed to diagnostic ultrasound during a typical clinical abdominal examination (including obstetrical and gynecological studies), the possibility of damage is highly unlikely in the presence of active peristalsis, transducer movement, and the relatively thick serosa, structural fibers, and quantity of longitudinal and circular smooth muscle in human intestine (see Section 3). As noted for the lung, the premature or term neonate may be more susceptible to intestinal hemorrhage, especially when the intestine is compromised by necrotizing enterocolitis or other pathologic conditions inhibiting peristalsis and promoting intraluminal and submucosal (intestinal wall) gas collections.

Finally, there are two special situations, that of the fetus and germ cells, in which the presence of a true biohazardous mechanical bioeffect of diagnostic ultrasound could be respectively devastating to the individual or to the species or both. With regard to the fetus, with lungs and intestines filled with amniotic fluid, to date there are no experimental data to suggest any lung or intestinal hemorrhage during in utero exposure even when exposed to acoustic pressures a magnitude greater than those known to cause lung hemorrhage in neonatal or adult mice (Hartman et al, 1990). In the case of germ cells (human ova) exposed to diagnostic ultrasound during a transvaginal or transabdominal (using a filled bladder as an acoustic window) gynecologic examination of the ovaries, it remains unclear whether appropriate stabilized gaseous nuclei even exist to initiate cavitation-related ultrasound bioeffects. An even more unlikely situation is that of the female fetus whose developing ova are exposed to diagnostic ultrasound during a routine obstetrical examination, in which the exposure would be so fleeting in a medium with no known preexisting gas nuclei to generate microbubbles that this is mentioned only for the sake of completion.

8.2 Clinical Relevance: Mechanical Bioeffects in Tissues Without Well-Defined Gas Bodies

Even in the absence of well-defined gas bodies, the preponderance of studies reporting nonthermal bioeffects of ultrasound were conducted under conditions that could not exclude bubble activity as a mechanism. Much of the research was conducted in vitro, under conditions generally believed to be much more conducive to bubble activity than would be found in vivo. Thus, the primary utility of in vitro studies is to provide information about ultrasound and biological mechanisms of action. In addition, the research was often conducted using ultrasound frequencies, pulse conditions, and dwell times not commonly used in diagnostic ultrasound. In many cases, these experimental ultrasound field conditions would be expected to enhance any bubble activity. For example, many bioeffects, including kidney tissue damage (Delius et al, 1988b, 1988c; Mayer et al, 1990; Weber et al, 1992) and effects on or near bone (Delius et al, 1995; Dalecki et al, 1997b), have been reported following exposure to extracorporeal shock wave lithotripsy sources. These studies provide information under extreme ultrasound field conditions that have been used to guide research for bioeffects under ultrasound field conditions typically used in diagnostic applications. Although the presence of cavitation nuclei and cavitation cannot be ruled out under in vivo conditions in tissues other than lung and intestine, no adverse bioeffects have been confirmed under exposure conditions relevant to diagnostic ultrasound.

However, cavitation may not be the only mechanical mechanism responsible for causing bioeffects. Displacement phenomena, radiation force effects, and macrostreaming may also play a role in some bioeffects. Some of the bioeffects that have been reported under exposure conditions relevant to diagnostic ultrasound, but for which the primary ultrasound mechanism of action is not believed to be cavitation, include thrombolytic effects (Nilsson et al, 1995; Tachibana and Tachibana, 1997), potentiation of drug therapy (Harrison et al, 1991; Saad and Hahn, 1992; Yumita et al, 1997), and stimulated fracture healing in bone (Pilla et al, 1990; Wang et al, 1994; Heckman et al, 1994). The ultrasound mechanism of action and, with the exception of bone fracture healing (Yang et al, 1996), the biological mechanism of action for these effects are not well understood. A greater understanding of these beneficial effects is needed to ensure that they do not have adverse consequences in biological systems or developmental stages other than those in which they have been studied.

8.3 Clinical Relevance: Mechanical Bioeffects in Tissues in the Presence of Gas-Carrier Ultrasound Contrast Agents

In vitro studies demonstrate that gas-carrier contrast agents (GCAs) are capable of significantly lowering the threshold acoustic pressures required for cavitation and may increase the extent of cavitation activity in fluid containing little or no cavitation nuclei (Holland and Apfel, 1990; Miller and Thomas, 1995b; Deng et al, 1996). These findings have potentially important implications for the mechanical bioeffects in vivo.

Much of the research on potential adverse bioeffects of GCAs has focused on blood, based on the intended use of GCAs. In vitro studies indicate that the percent hemolysis decreases as the hematocrit increases (Williams et al, 1991; Brayman et al, 1992; Carstensen et al, 1992), but the total number of cells lysed remains constant (Miller MW et al, 1995; Brayman et al, 1995). These results indicate that under worst case conditions, only a small percentage of the systemic erythrocytes potentially might be lysed. Results of in vitro and in vivo studies demonstrate a strong dependence of hemolysis on ultrasound frequency (Dalecki et al 1997d, 1997f; Brayman and Miller, 1997a; Brayman et al 1997b) and further suggest that ultrasound-induced hemolysis should not constitute a hazard for healthy individuals when using GCAs in current diagnostic imaging procedures.

It is generally accepted that mouse lung is perhaps the most sensitive tissue to hemorrhage under diagnostically relevant ultrasound exposure conditions. This sensitivity is due to physiology of the mouse lung and the presence of gas in the tissue. However, it has been demonstrated that the presence of GCAs does not increase the risk of mouse lung hemorrhage under diagnostically relevant ultrasound exposures (Raeman et al, 1997). On the other hand, rupture of muscle microvessels (Skyba et al, 1998) and intestinal hemorrhage (Miller DL and Geis, 1998d) have been reported in rodents injected with GCAs prior to ultrasound exposure. These results and clinical experience do not indicate that GCAs pose any unreasonable health hazard from vasculature damage under current diagnostic ultrasound procedures. However, because of the possibility of even limited vasculature damage and the unknown mechanism of action and health implications of some potential therapeutic applications under acoustic exposure levels comparable to diagnostic applications, caution should be exercised before extending the use of GCAs into obstetrical procedures.

Tissue damage has been demonstrated to be increased in the presence of GCAs in mouse lung and intestine tissues exposed to lithotripter fields. In addition, mice also showed extensive hemorrhages in the muscle, fat, mesentery, kidneys, stomach, bladder, and seminal vesicles (Dalecki et al, 1997b). It has also been reported that GCAs continue to supply cavitation nuclei for several hours after injection (Dalecki et al, 1997e). These studies suggest caution should be practiced in the use of GCAs before or during lithotripsy procedures.

GCAs have also been employed for therapeutic purposes, e.g., tumor treatment (with or without drugs) and thrombolysis (with or without drugs). These applications are still in the research phase of development and often employ ultrasound field conditions not used diagnostically. One of the concerns with the use of GCAs and ultrasound for the treatment of tumors is whether treatment may increase the prevalence of metastasis. Of the few studies exploring this possibility (Geldhof et al, 1989; Oosterhof et al, 1990, 1996; Hoshi et al, 1991), all have employed lithotripsy and all but one have been negative (Oosterhof et al, 1996). Nevertheless, the one positive study does raise the issue of whether the use of GCAs to image tumors may contribute to metastasis. A greater understanding of the mechanisms of action and clinical effects of these therapeutic uses of GCAs is needed to determine whether any potential adverse effects are relevant to diagnostic ultrasound procedures.

8.4 Mechanical Bioeffects in Tissues with Unintentional Gas Collections

Gas collections occur unintentionally in the body via natural phenomena, occupational conditions, and iatrogenic sources. While no controlled studies have been performed to address the interaction of diagnostic ultrasound with unintentional gas collections in the body, it is worthwhile to review the causes and locations of these collections in the context of this section.

Some examples of natural phenomenon that introduce gas into the body would include forceful exhalation, as is seen when playing a horn instrument, and paroxysmal coughing. These activities usually result in subcutaneous emphysema that resolves within 24 hours. Distraction of joints, as is seen when a parent picks a child up by the extremity, results in nitrogen gas formation within the joint. These are small collections that are transient. No case reports or formal studies are found in the medical literature to address the interactions of diagnostic ultrasound with either subcutaneous or intraarticular gas collections.

Occupational conditions that result in unintentional gas collections in the body include occupations to which extremes of pressure are applied to the human body, and then the body is returned to normal atmospheric pressure (commercial and recreational scuba divers, mountain climbers, aviation and space travelers, and hyperbaric chamber attendants). Venous gas bubbles have been detected in sport divers and commercial divers who use compressed air while diving (Boussuges et al, 1998; Eckenhoff et al, 1990). Breath-hold diving is not associated with venous gas emboli (Boussuges et al, 1997). Echenhoff et al (1990) concluded that 50% of humans can be expected to generate endogenous bubbles after decompression from a steady state pressure exposure of only 135 kPa (11 feet of sea water). This study also suggested that the endogenous bubble formation was due to preexisting gas collections within the body. The presence of venous gas emboli correlates with the occurrence of decompression sickness when divers return to atmospheric pressure. One mechanism hypothesized in postdiving for acute decompression illness and subclinical neurologic impairment is shunting of the emboli into the arterial circulation through a patent foramen ovale (Glen et al, 1995). Venous gas emboli are also reported in altitude-induced decompression sickness (Pilmanis et al, 1996).

In hyperbaric chambers, venous gas microemboli have demonstrated a significant reduction in transfer factor for carbon monoxide and reductions in arterial PO2 levels on the average of 20 Torr when the dives were followed with air decompression versus oxygen decompression (Thorsen et al, 1995). Dujic et al (1993) concluded that the reduction in pulmonary diffusing capacity was observed in parallel with the appearance of venous bubbles and hypothesized that the bubbles cause pulmonary microembolization, which triggers a complex sequence of events. Complement activation does not appear to play a role in the sequence of events (Shastri et al, 1997).

Pulsed and continuous wave Doppler techniques are the common methods utilized in evaluation of the heart, subclavian vein, and transcranial circulation in recreational and commercial-diving experiments, as well as in hyperbaric chamber-diving experiments. While one study was performed to evaluate the use of Doppler echocardiography during human saturation dives and found it safe (Lafay et al, 1997), no studies have been performed to evaluate the safety of Doppler interrogation following the return to atmospheric pressure. On the other hand, since thousands of divers have been studied with Doppler technique, and no case reports of worsening of symptoms following the Doppler examination have been reported, this anecdotal evidence would support the fact that routine diagnostic Doppler sonography is reasonably safe.

The iatrogenic introduction of unintentional gas collections into the body is commonplace. Both gaseous and solid microemboli are associated with cardiopulmonary bypass surgery with 6%–34% of patients having persistent neurologic deficits or neuropsychological deterioration (Sotaniemi et al, 1986; Smith PL et al, 1986; Aris et al, 1986; Shaw et al, 1987; Roach et al, 1996). Gaseous emboli have also been noted in patients with artificial heart valves (Georgiadis et al, 1998), in patients on positive pressure ventilation (Weaver and Morris, 1998), and in almost any medical scenario in which a catheter is introduced into the body. The Doppler waveform has been characterized to indicate whether the emboli are gaseous or solid (Markus, 1993; Litscher et al, 1997). No research studies have been conducted to evaluate the number of emboli, the size of gas emboli, or the change in symptoms before and after administration of Doppler ultrasound energy. However, there are no case reports to indicate that changes occur at current diagnostic Doppler levels.

In conclusion, any situation that causes local or generalized pressure changes in the body and a subsequent return to normal atmospheric pressure can lead to the formation of unintentional gas collections. In many occupational and iatrogenic situations, Doppler sonography is the imaging modality of choice for documenting the presence of venous gas emboli. There are currently no case reports or controlled studies to indicate a change in the number of emboli, the size of the emboli, or the patient’s symptoms following the Doppler examination.

References

  1. Abramowicz JS. Ultrasound contrast media and their use in obstetrics and gynecology. Ultrasound Med Biol. 1997;23:1287. doi: 10.1016/s0301-5629(97)00201-9. [DOI] [PubMed] [Google Scholar]
  2. Abramowicz JS, Phillips DB, Jessee LN, et al. Enhanced blood flow visualization in the perfused human placenta by Albunex®, an ultrasound contrast medium. Placenta. 1996;17:A.21. doi: 10.1002/(sici)1097-0096(199911/12)27:9<513::aid-jcu5>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  3. Achiron R, Lipitz S, Sivan E, et al. Sonohysterography for ultrasonographic evaluation of tamoxifen-associated cystic thickened endometrium. J Ultrasound Med. 1995;14:685. doi: 10.7863/jum.1995.14.9.685. [DOI] [PubMed] [Google Scholar]
  4. Allahbadia GN. Fallopian tubes and ultrasonography: The Sion experience. Fertil Steril. 1992;58:901. doi: 10.1016/s0015-0282(16)55432-6. [DOI] [PubMed] [Google Scholar]
  5. AIUM American Insitute of Ultrasound in Medicine Bioeffects Committee. Bioeffects and Safety of Diagnostic Ultrasound. Laurel, MD: American Institute of Ultrasound in Medicine; 1993. [Google Scholar]
  6. AIUM/NEMA American Institute of Ultrasound in Medicine/National Electrical Manufacturers Association. Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment. Laurel, MD: American Institute of Ultrasound in Medicine; 1992a. [Google Scholar]
  7. AIUM/NEMA American Institute of Ultrasound in Medicine/National Electrical Manufacturers Association. Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. [Google Scholar]
  8. AIUM/NEMA American Insitute of Ultrasound in Medicine/National Electrical Manufacturers Association. Standard for the Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment. Laurel, MD: American Institute of Ultrasound in Medicine; 1992b. (rev 1996) [Google Scholar]
  9. Anderson AL, Hampton LD. Acoustics of gas-bearing sediments: I. Background. J Acoust Soc Am. 1980;67:1865. [Google Scholar]
  10. Apfel RE. Acoustic cavitation: A possible consequence of biomedical uses of ultrasound. Br J Cancer. 1982;45:140. [PMC free article] [PubMed] [Google Scholar]
  11. Apfel RE. Acoustic cavitation prediction. J Acoust Soc Am. 1981;69:1624. [Google Scholar]
  12. Apfel RE. Possibility of microcavitation from diagnostic ultrasound. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1986;32:19. doi: 10.1109/t-uffc.1986.26805. [DOI] [PubMed] [Google Scholar]
  13. Apfel RE. The role of the impurities in the cavitation-threshold determination. J Acoust Soc Am. 1970;48:1179. [Google Scholar]
  14. Apfel RE, Holland CK. Gauging the likelihood of cavitation from short pulse, low duty cycle diagnostic ultrasound. Ultrasound Med Biol. 1991;17:179. doi: 10.1016/0301-5629(91)90125-g. [DOI] [PubMed] [Google Scholar]
  15. Ariani M, Fishbein MC, Chae IS, et al. Dissolution of peripheral arterial thrombi by ultrasound. Circulation. 1991;84:1680. doi: 10.1161/01.cir.84.4.1680. [DOI] [PubMed] [Google Scholar]
  16. Aris A, Solanes H, Camara ML, et al. Arterial line filtration during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1986;91:526. [PubMed] [Google Scholar]
  17. Armour EL, Corry PM. Cytotoxic effects of ultrasound in vitro: Dependence on gas content, frequency, radical scavengers, and attachment. Radiat Res. 1982;89:369. [PubMed] [Google Scholar]
  18. Armstrong WF, Mueller TM, Kinney EL, et al. Assessment of myocardial perfusion abnormalities with contrast-enhanced two-dimensional echocardiography. Circulation. 1982;66:166. doi: 10.1161/01.cir.66.1.166. [DOI] [PubMed] [Google Scholar]
  19. Aronson S, Roth R, Fernandez A, et al. Assessment of regional renal blood flow in the dog with FS069, a novel intravenous ultrasound contrast agent. Anesth Analg. 1996;82:S10. [Google Scholar]
  20. Atchley AA, Frizzell LA, Apfel RE, et al. Thresholds for cavitation produced in water by pulsed ultrasound. Ultrasonics. 1988;26:280. doi: 10.1016/0041-624x(88)90018-2. [DOI] [PubMed] [Google Scholar]
  21. Atchley AA, Prosperetti A. The crevice model of bubble nucleation. J Acoust Soc Am. 1989;86:1065. [Google Scholar]
  22. Averkiou M. Nonlinear propagation modeling with KZK equation and comparison with measurements. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  23. Ayme EJ, Carstensen EL. Cavitation induced by asymmetric, distorted pulses of ultrasound: A biological test. Ultrasound Med Biol. 1989;15:61. doi: 10.1016/0301-5629(89)90133-6. [DOI] [PubMed] [Google Scholar]
  24. Azadniv M, Doida Y, Miller MW, et al. Temporality in ultrasound-induced cell lysis in vitro. Echocardiography. 1995;13:45. doi: 10.1111/j.1540-8175.1996.tb00866.x. [DOI] [PubMed] [Google Scholar]
  25. Baggs R, Penney DP, Cox C, et al. Thresholds for ultrasonically induced lung hemorrhage in neonatal swine. Ultrasound Med Biol. 1996;22:119. doi: 10.1016/0301-5629(95)02035-7. [DOI] [PubMed] [Google Scholar]
  26. Bailey MR, Blackstock DT, Cleveland RO, et al. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors: I. Acoustic fields. J Acoust Soc Am. 1998;104:2517. doi: 10.1121/1.423758. [DOI] [PubMed] [Google Scholar]
  27. Bailey MR, Dalecki D, Child SZ, et al. Bioeffects of positive and negative acoustic pressures in vivo. J Acoust Soc Am. 1996;100:3941. doi: 10.1121/1.417340. [DOI] [PubMed] [Google Scholar]
  28. Balen FG, Allen CM, Lees WR. Ultrasound contrast agents. Clin Radiol. 1994;49:77. doi: 10.1016/s0009-9260(05)83446-4. [DOI] [PubMed] [Google Scholar]
  29. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol. 1997;23:953. doi: 10.1016/s0301-5629(97)00025-2. [DOI] [PubMed] [Google Scholar]
  30. Barbarese E, Ho SY, D’Arrigo JS, et al. Internalization of microbubbles by tumor cells in vivo and in vitro. J Neurooncol. 1995;26:25. doi: 10.1007/BF01054766. [DOI] [PubMed] [Google Scholar]
  31. Barnett SB, Miller MW, Cox C, et al. Increased sister chromatid exchanges in Chinese hamster ovary cells exposed to high intensity pulsed ultrasound. Ultrasound Med Biol. 1988;14:397. doi: 10.1016/0301-5629(88)90075-0. [DOI] [PubMed] [Google Scholar]
  32. Barnhart J, Levene H, Villanando E, et al. Air-filled albumin microspheres for echocardiography contrast enhancement. Invest Radiol. 1990;25:S162. doi: 10.1097/00004424-199009001-00070. [DOI] [PubMed] [Google Scholar]
  33. Bell E. The action of ultrasound on mouse liver. Journal of Cellular and Comparative Physiology. 1957;50:83. doi: 10.1002/jcp.1030500107. [DOI] [PubMed] [Google Scholar]
  34. Belz GG, Breithaupt K, Butzer R, et al. Image quality and safety following intravenous BY963, a new transpulmonary echo contrast media in man. J Am Coll Cardiol. 1994;23:A24. [Google Scholar]
  35. Bender LF, Janes JM, Herrick JF. Histologic studies following exposure of bone to ultrasound. Arch Phys Med Rehabil. 1954;35:555. [PubMed] [Google Scholar]
  36. Beranek LL. Acoustical Measurements. New York, NY: American Institute of Physics; 1988. p. 33. [Google Scholar]
  37. Blackshear PL, Blackshear GL. Mechanical hemolysis. In: Shalak R, Chien S, editors. Handbook of Bio-engineering. New York, NY: McGraw-Hill; 1987. pp. 15.1–15.9. [Google Scholar]
  38. Bleeker H. Master of Science thesis in bioengineering. University Park, PA: Pennsylvania State University; 1990a. Physical and Ultrasonic Characterization of Ultrasonic Contrast Agents. [Google Scholar]
  39. Bleeker HJ, Shung KK, Barnhart JL. Ultrasonic characterization of Albunex®, a new contrast agent. J Acoust Soc Am. 1990b;87:1792. [Google Scholar]
  40. Blinc A, Francis CW, Trudnowski JL, et al. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood. 1993;81:2636. [PubMed] [Google Scholar]
  41. Bonilla-Musoles F, Simon C, Serra V, et al. An assessment of hysterosalpingosonography (HSSG) as a diagnostic tool for uterine cavity defects and tubal patency. J Clin Ultrasound. 1992;20:175. doi: 10.1002/jcu.1870200303. [DOI] [PubMed] [Google Scholar]
  42. Boussuges A, Abdellaoui S, Gardette B, et al. Circulating bubbles and breath-hold underwater fishing divers: A two-dimensional echocardiography and continuous wave Doppler study. Undersea Hyperb Med. 1997;24:309. [PubMed] [Google Scholar]
  43. Boussuges A, Carturan D, Ambrosi P, et al. Decompression induced venous gas emboli in sport diving: Detection with 2D echocardiography and pulsed Doppler. Int J Sports Med. 1998;19:7. doi: 10.1055/s-2007-971871. [DOI] [PubMed] [Google Scholar]
  44. Brand RP, Nyborg WL. Parametrically excited surface waves. J Acoust Soc Am. 1965;37:509. [Google Scholar]
  45. Brayman AA, Azadniv M, Cox C, et al. Hemolysis of Albunex®-supplemented, 40% hematocrit human erythrocytes in vitro by 1 MHz pulsed ultrasound: Acoustic pressure and pulse length dependence. Ultrasound Med Biol. 1996a;22:927. doi: 10.1016/0301-5629(96)00108-1. [DOI] [PubMed] [Google Scholar]
  46. Brayman AA, Azadniv M, Makin IRS, et al. Effect of a stabilized microbubble contrast agent on hemolysis of human erythrocytes exposed to high-intensity pulsed ultrasound. Echocardiography. 1995;12:13. [Google Scholar]
  47. Brayman AA, Church CC, Miller MW. Re-evaluation of the concept that high cell concentrations “protect” cells in vitro from ultrasonically-induced lysis. Ultrasound Med Biol. 1996b;22:497. doi: 10.1016/0301-5629(95)02078-0. [DOI] [PubMed] [Google Scholar]
  48. Brayman AA, Doida Y, Miller MW. Apparent contribution of respiratory gas exchange to the in vitro “cell density effect” in ultrasonic cell lysis. Ultrasound Med Biol. 1992;18:701. doi: 10.1016/0301-5629(92)90121-p. [DOI] [PubMed] [Google Scholar]
  49. Brayman AA, Miller MW. Acoustic cavitation nuclei survive the apparent ultrasonic destruction of Albunex® microspheres. Ultrasound Med Biol. 1997a;23:793. doi: 10.1016/s0301-5629(97)00008-2. [DOI] [PubMed] [Google Scholar]
  50. Brayman AA, Miller MW. Ultrasonic cell lysis in vitro upon fractional, discontinuous exposure vessel rotation. J Acoust Soc Am. 1994;95:3666. doi: 10.1121/1.409937. [DOI] [PubMed] [Google Scholar]
  51. Brayman AA, Strickler PS, Luan H, et al. Hemolysis of 40% hematocrit, Albunex®-supplemented human erythrocyte suspensions by intense pulsed ultrasound: Frequency, duty factor, pulse length and sample rotation dependence. Ultrasound Med Biol. 1997b;23:1237. doi: 10.1016/s0301-5629(97)00126-9. [DOI] [PubMed] [Google Scholar]
  52. Brown J, Alderman J, Quedens-Case C, et al. Enhancement demonstration of neovascularity in a VX2 carcinoma by ultrasonic contrast (FS069, MBI, Inc) J Ultrasound Med. 1996;15:S18. [Google Scholar]
  53. Burns PN. Ultrasound contrast agents in radiological diagnosis. Radiol Med. 1994a;87:71. [PubMed] [Google Scholar]
  54. Burns PN, Powers JE, Hope-Simpson D, et al. Harmonic power mode Doppler using microbubble contrast agents: An improved method for small vessel flow imaging. Proc IEEE Ultrasononics Symp. 1994b;3:1547. [Google Scholar]
  55. Camarano G, Ragosta M, Gimple W, et al. Identification of viable myocardium with contrast echocardiography in patients with poor left ventricular systolic function caused by recent or remote myocardial infarction. Am J Cardiol. 1995;75:215. doi: 10.1016/0002-9149(95)80022-k. [DOI] [PubMed] [Google Scholar]
  56. Campbell S, Bourne TH, Tan SL. Hysterosalpingo contrast sonography (HyCoSy) and its future role within the investigation of infertility in Europe. Ultrasound Obstet Gynecol. 1994;4:245. doi: 10.1046/j.1469-0705.1994.04030245.x. [DOI] [PubMed] [Google Scholar]
  57. Carmichael AJ, Mossoba MM, Riesz P, et al. Free radical production in aqueous solutions exposed to simulated ultrasonic diagnostic conditions. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1986;33:148. doi: 10.1109/t-uffc.1986.26807. [DOI] [PubMed] [Google Scholar]
  58. Carstensen EL, Campbell DS, Hoffman D, et al. Killing of Drosophila larvae by the fields of an electro-hydraulic lithotripter. Ultrasound Med Biol. 1990a;16:687. doi: 10.1016/0301-5629(90)90102-i. [DOI] [PubMed] [Google Scholar]
  59. Carstensen EL, Dalecki D, Gracewski S, et al. Nonlinear propagation and the mechanical index scanners. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Abstracts and Handouts: Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  60. Carstensen EL, Duck FA, Meltzer RS, et al. Bioeffects in echocardiography. Echocardiography. 1992;6:605. doi: 10.1111/j.1540-8175.1992.tb00506.x. [DOI] [PubMed] [Google Scholar]
  61. Carstensen EL, Hartman C, Child SZ, et al. Test for kidney hemorrhage following exposure to intense, pulsed ultrasound. Ultrasound Med Biol. 1990b;16:681. doi: 10.1016/0301-5629(90)90101-h. [DOI] [PubMed] [Google Scholar]
  62. Carstensen EL, Kelly P, Church C, et al. Lysis of erythrocytes by exposure to CW ultrasound. Ultrasound Med Biol. 1993;19:147. doi: 10.1016/0301-5629(93)90007-b. [DOI] [PubMed] [Google Scholar]
  63. Cennamo G, Rosa N, Vallone GF, et al. First experience with a new echographic contrast agent. Br J Ophthalmol. 1994;78:823. doi: 10.1136/bjo.78.11.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Chang PH, Shung KK. Attenuation and backscatter measurements on Albunex®. Proc IEEE Ultrasonics Symp. 1993;2:913. [Google Scholar]
  65. Chang PH, Shung KK, Levene HB. Quantitative measurements of second harmonic Doppler using ultrasound contrast agents. Ultrasound Med Biol. 1996;22:1205. doi: 10.1016/s0301-5629(96)00146-9. [DOI] [PubMed] [Google Scholar]
  66. Chang PH, Shung KK, Levene HB. Second harmonic imaging and harmonic Doppler measurements with Albunex®. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1995;42:1020. [Google Scholar]
  67. Chapelon JY, Dupenloup F, Cohen H, et al. Reduction of cavitation using pseudorandom signals. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1996;43:623. [Google Scholar]
  68. Chaussy C. Extracorporeal Shock Wave Lithotripsy: New Aspects in the Treatment of Kidney Stone Disease. Basel: Karger; 1982. [Google Scholar]
  69. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2:1265. doi: 10.1016/s0140-6736(80)92335-1. [DOI] [PubMed] [Google Scholar]
  70. Chiang HT, Lin M. Pericardiocentesis guided by two-dimensional contrast echocardiography. Echocardiography. 1993;10:465. doi: 10.1111/j.1540-8175.1993.tb00060.x. [DOI] [PubMed] [Google Scholar]
  71. Child SZ, Hartman CL, Schery LA, et al. Lung damage from exposure to pulsed ultrasound. Ultrasound Med Biol. 1990;16:817. doi: 10.1016/0301-5629(90)90046-f. [DOI] [PubMed] [Google Scholar]
  72. Christenson HK, Claesson PM. Cavitation and the interaction between macroscopic hydrophobic surfaces. Science. 1988;236:390. doi: 10.1126/science.239.4838.390. [DOI] [PubMed] [Google Scholar]
  73. Christiansen C, Kryvi H, Sontum PC, et al. Physical and biochemical characterization of Albunex®, a new ultrasound contrast agent consisting of air-filled albumin microspheres suspended in a solution of human albumin. Appl Biochem Biotechnol. 1994;19:307. [PubMed] [Google Scholar]
  74. Christopher T. A hopefully complete nonlinear model for predictiong in vivo fields of clinical scanners. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Abstracts and Handouts: Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  75. Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am. 1995;97:1510. [Google Scholar]
  76. Church CC, Flynn HG, Miller MW, et al. The exposure vessel as a factor in ultrasonically induced mammalian cell lysis. II Ultrasound Med Biol. 1982;8:299. doi: 10.1016/0301-5629(82)90036-9. [DOI] [PubMed] [Google Scholar]
  77. Ciaravino V, Brulfert A, Miller MW, et al. Diagnostic ultrasound and sister chromatid exchanges: Failure to reproduce positive results. Science. 1985;227:1349. doi: 10.1126/science.3883487. [DOI] [PubMed] [Google Scholar]
  78. Ciaravino V, Miller MW, Carstensen EL. Sister chromatid exchanges in human lymphocytes exposed in vitro to therapeutic ultrasound. Mutat Res. 1986;172:185. doi: 10.1016/0165-1218(86)90074-1. [DOI] [PubMed] [Google Scholar]
  79. Ciaravino V, Miller MW, Kaufman GE. The effect of 1 MHz ultrasound on the proliferation of synchronized Chinese hamster V-79 cells. Ultrasound Med Biol. 1981;7:175. doi: 10.1016/0301-5629(81)90007-7. [DOI] [PubMed] [Google Scholar]
  80. Cicinelli E, Romano F, Anastasio PS, et al. Sonohysterography versus hysteroscopy in the diagnosis of endouterine polyps. Gynecol Obstet Invest. 1994;38:266. doi: 10.1159/000292494. [DOI] [PubMed] [Google Scholar]
  81. Cicinelli E, Romano F, Anastasio PS, et al. Transabdominal sonohysterography, transvaginal sonography and hysteroscopy in the evaluation of submucous myomas. Obstet Gynecol. 1995;85:42. doi: 10.1016/0029-7844(94)00298-r. [DOI] [PubMed] [Google Scholar]
  82. Clarke PR, Hill CR. Physical and chemical aspects of ultrasonic disruption of cells. J Acoust Soc Am. 1970;47:649. doi: 10.1121/1.1911940. [DOI] [PubMed] [Google Scholar]
  83. Coakley WT. Acoustical detection of single cavitation events in a focused field in water at 1 MHz. J Acoust Soc Am. 1970;49:792. [Google Scholar]
  84. Coakley WT, Nyborg WL. Cavitation; dynamics of gas bubbles; applications. In: Fry FJ, editor. Ultrasound: Its Application in Medicine and Biology. New York, NY: Elsevier; 1978. pp. 77–159. [Google Scholar]
  85. Cohen J. Statistical Power Analysis for the Behavioral Sciences (Revised Edition) New York, NY: Academic Press; 1977. [Google Scholar]
  86. Coleman AJ, Chio MJ, Saunders JE, et al. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shockwave lithotripter. Ultrasound Med Biol. 1992;18:267. doi: 10.1016/0301-5629(92)90096-s. [DOI] [PubMed] [Google Scholar]
  87. Coleman AJ, Chio MJ, Saunders JE, et al. Detection of acoustic cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol. 1996;22:1079. doi: 10.1016/s0301-5629(96)00118-4. [DOI] [PubMed] [Google Scholar]
  88. Coleman AJ, Saunders JE. A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics. 1993;31:75. doi: 10.1016/0041-624x(93)90037-z. [DOI] [PubMed] [Google Scholar]
  89. Coleman AJ, Saunders JE, Crum LA, et al. Acoustic cavitation generated by an extracorporeal shock-wave lithotripter. Ultrasound Med Biol. 1987;13:69. doi: 10.1016/0301-5629(87)90076-7. [DOI] [PubMed] [Google Scholar]
  90. Coley BD, Trambert MA, Mattrey RF. Perfluorocarbon-enhanced sonography: Value in detecting acute venous thrombosis in rabbits. Am J Roentgenol. 1994;163:961. doi: 10.2214/ajr.163.4.8092043. [DOI] [PubMed] [Google Scholar]
  91. Correas JM, Quay SA. EchoGen™ emulsion: A new ultrasound contrast agent based on phase shift colloids. Clin Radiol. 1996;51(S1):11. [PubMed] [Google Scholar]
  92. Cotter B, Keramati S, Kwan OL, et al. Myocardial opacification with low dose activated EchoGen™ in patients: Initial experience. Circulation. 1995;92:1. [Google Scholar]
  93. Cowden JW, Abell MR. Some effects of ultrasonic radiation on normal tissues. Exp Mol Pathol. 1963;2:367. doi: 10.1016/0014-4800(63)90017-0. [DOI] [PubMed] [Google Scholar]
  94. Crequat J, Pennehouat G, Cornier E, et al. Evaluation of intra-uterine pathology and tubal patency by contrast echography. Contraception, Fertilite, Sexualite (French) 1993;21:861. [PubMed] [Google Scholar]
  95. Crosfill ML, Widdicombe JG. Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol (London) 1961;158:1. doi: 10.1113/jphysiol.1961.sp006750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Crouch EC, Parks WC. Comparative biochemistry and molecular biology of pulmonary connective tissues. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. p. 451. [Google Scholar]
  97. Crouse LJ, Cheirif J, Hanly DE, et al. Opacification and border delineation improvement in patients with suboptimal endocardial border definition in routine echocardiography: Results of the Phase III Albunex® Multicenter Trial. J Am Coll Cardiol. 1993;22:1494. doi: 10.1016/0735-1097(93)90562-f. [DOI] [PubMed] [Google Scholar]
  98. Crum LA. Tensile strength of water. Nature. 1979;278:148. [Google Scholar]
  99. Crum LA, Fowlkes JB. Acoustic cavitation generated by microsecond pulses of ultrasound. Nature. 1986;319:52. [Google Scholar]
  100. Crum LA, Roy RA, Dino MA, et al. Acoustic cavitation produced by microsecond pulses of ultrasound: A discussion of some selected results. J Acoust Soc Am. 1992;91:1113. doi: 10.1121/1.402638. [DOI] [PubMed] [Google Scholar]
  101. Cullinan JA, Fleischer AC, Kepple DM, et al. Sonohysterography: A technique for endometrial evaluation. Radiographics. 1995;15:501. doi: 10.1148/radiographics.15.3.7624559. [DOI] [PubMed] [Google Scholar]
  102. Curtis JC. Action of intense ultrasound on the intact mouse liver. In: Kelly E, editor. Ultrasonic Energy. Champaign-Urbana, IL: University of Illinois Press; 1965. p. 85. [Google Scholar]
  103. Dalecki D, Carstensen EL, Parker KJ, et al. Absorption of finite amplitude focused ultrasound. J Acoust Soc Am. 1991;89:2435. doi: 10.1121/1.400976. [DOI] [PubMed] [Google Scholar]
  104. Dalecki D, Child SZ, Raeman CH, et al. Age dependence of ultrasonically induced lung hemorrhage in mice. Ultrasound Med Biol. 1997a;23:767. doi: 10.1016/s0301-5629(97)00071-9. [DOI] [PubMed] [Google Scholar]
  105. Dalecki D, Child SZ, Raeman CH, et al. Tactile perception of ultrasound. J Acoust Soc Am. 1995a;97:3165. doi: 10.1121/1.411877. [DOI] [PubMed] [Google Scholar]
  106. Dalecki D, Child SZ, Raeman CH, et al. Thresholds for fetal hemorrhages produced by a piezoelectric lithotriper. Ultrasound Med Biol. 1997b;23:287. doi: 10.1016/s0301-5629(96)00212-8. [DOI] [PubMed] [Google Scholar]
  107. Dalecki D, Child SZ, Raeman CH, et al. Ultrasonically induced lung hemorrhage in young swine. Ultrasound Med Biol. 1997c;23:777. doi: 10.1016/s0301-5629(97)00070-7. [DOI] [PubMed] [Google Scholar]
  108. Dalecki D, Keller BB, Raeman CH, et al. Effects of pulsed ultrasound on the frog heart: I. Thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound Med Biol. 1993a;19:385. doi: 10.1016/0301-5629(93)90057-u. [DOI] [PubMed] [Google Scholar]
  109. Dalecki D, Raeman CH, Carstensen EL. Effects of pulsed ultrasound on the frog heart: II. An investigation of heating as a potential mechanism. Ultrasound Med Biol. 1993b;19:391. doi: 10.1016/0301-5629(93)90058-v. [DOI] [PubMed] [Google Scholar]
  110. Dalecki D, Raeman CH, Child SZ, et al. A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound Med Biol. 1996;22:493. doi: 10.1016/0301-5629(96)00033-6. [DOI] [PubMed] [Google Scholar]
  111. Dalecki D, Raeman CH, Child SZ, et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol. 1997d;23:301. doi: 10.1016/s0301-5629(96)00203-7. [DOI] [PubMed] [Google Scholar]
  112. Dalecki D, Raeman CH, Child SZ, et al. Intestinal hemorrhage from exposure to pulsed ultrasound. Ultrasound Med Biol. 1995b;21:1067. doi: 10.1016/0301-5629(95)00041-o. [DOI] [PubMed] [Google Scholar]
  113. Dalecki D, Raeman CH, Child SZ, et al. Remnants of Albunex® nucleate acoustic cavitation. Ultrasound Med Biol. 1997e;23:1405. doi: 10.1016/s0301-5629(97)00142-7. [DOI] [PubMed] [Google Scholar]
  114. Dalecki D, Raeman CH, Child SZ, et al. The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol. 1997f;23:1435. doi: 10.1016/s0301-5629(97)00151-8. [DOI] [PubMed] [Google Scholar]
  115. Dalecki D, Raeman CH, Child SZ, et al. Effects of pulsed ultrasound on the frog heart: III. The radiation force mechanism. Ultrasound Med Biol. 1997g;23:275. doi: 10.1016/s0301-5629(96)00209-8. [DOI] [PubMed] [Google Scholar]
  116. Dalecki D, Raeman CH, Child SZ, et al. Thresholds for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound Med Biol. 1995c;21:1239. doi: 10.1016/0301-5629(95)02014-4. [DOI] [PubMed] [Google Scholar]
  117. D’Arrigo JS, Imae T. Physical characteristics of ultra-stable lipid-coated microbubbles. J Colloid Interface Sci. 1992;149:592. [Google Scholar]
  118. Degenhardt E, Jibril S, Gohde M, et al. Ambulatory contrast hysterosonography as a possibility for assessing tubal patency. (German) Geburtshilfe Frauenheilkd. 1995;55:143. doi: 10.1055/s-2007-1022793. [DOI] [PubMed] [Google Scholar]
  119. Deichert V, Schlief R, van de Sandt M, et al. Transvaginal hystero-contrast-sonography (Hy-CoSy) compared with conventional tubal diagnostics. Hum Reprod. 1989;4:418. doi: 10.1093/oxfordjournals.humrep.a136920. [DOI] [PubMed] [Google Scholar]
  120. Deichert V, van de Sandt M, Lauth G, et al. Transvaginal hysterosonography. A new diagnostic procedure for differentiating intrauterine and myometrial findings. Geburstshilfe Frauenheilkd. 1988;48:835. doi: 10.1055/s-2008-1026637. [DOI] [PubMed] [Google Scholar]
  121. de Jong N. Improvements in ultrasound contrast agents. IEEE Eng Med Biol Mag. 1996;15:72. [Google Scholar]
  122. de Jong N, Hoff L, Skotland T, et al. Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements. Ultrasonics. 1992;30:95. doi: 10.1016/0041-624x(92)90041-j. [DOI] [PubMed] [Google Scholar]
  123. de Jong N, Hoff L. Ultrasound scattering properties of Albunex® microspheres. Ultrasonics. 1993;31:175. doi: 10.1016/0041-624x(93)90004-j. [DOI] [PubMed] [Google Scholar]
  124. de Jong N, Ten Cate FJ, Lancee CT, et al. Principles and recent developments in ultrasound contrast agents. Ultrasonics. 1991;29:324. doi: 10.1016/0041-624x(91)90030-c. [DOI] [PubMed] [Google Scholar]
  125. Delius M, Brendel W, Heine G. A mechanism of gallstone destruction by extracorporeal shock wave. Naturwissenschaften. 1988a;75:200. doi: 10.1007/BF00735580. [DOI] [PubMed] [Google Scholar]
  126. Delius M, Denk R, Berding C, et al. Biological effects of shock waves: Cavitation by shock waves in piglet liver. Ultrasound Med Biol. 1990;16:467. doi: 10.1016/0301-5629(90)90169-d. [DOI] [PubMed] [Google Scholar]
  127. Delius M, Draenert K, Aldiek Y, et al. Biological effects of shock-waves—In vivo effects of high-energy pulses on rabbit bone. Ultrasound Med Biol. 1995;21:1219. doi: 10.1016/0301-5629(95)00030-5. [DOI] [PubMed] [Google Scholar]
  128. Delius M, Enders G, Xuan Z, et al. Biological effects of shock waves: Kidney damage by shock waves in dogs—dose dependence. Ultrasound Med Biol. 1988b;14:117. doi: 10.1016/0301-5629(88)90178-0. [DOI] [PubMed] [Google Scholar]
  129. Delius M, Hoffman E, Steinbeck G, et al. Biological effects of shock waves—Induction of arrhythmia in piglet hearts. Ultrasound Med Biol. 1994;20:279. doi: 10.1016/0301-5629(94)90068-x. [DOI] [PubMed] [Google Scholar]
  130. Delius M, Jordan M, Eizenhoefer H, et al. Biological effects of shock waves: Kidney hemorrhage by shock waves in dogs—administration rate dependence. Ultrasound Med Biol. 1988c;14:689. doi: 10.1016/0301-5629(88)90025-7. [DOI] [PubMed] [Google Scholar]
  131. Denbow ML, Blomley MJK, Cosgrove DO, et al. Ultrasound microbubble contrast angiography in monochorionic twins. Lancet. 1997;349:773. doi: 10.1016/S0140-6736(97)24011-0. [DOI] [PubMed] [Google Scholar]
  132. Deng CX, Xu Q, Apfel RE, et al. In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound Med Biol. 1996;22:939. doi: 10.1016/0301-5629(96)00104-4. [DOI] [PubMed] [Google Scholar]
  133. Devin C. Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water. J Acoust Soc Am. 1959;31:1654. [Google Scholar]
  134. Dittrich HC, Bales GL, Hunt RM, et al. Multiple organ tissue perfusion by intravenously (IV) administered novel ultrasound contrast agents in dogs. J Ultrasound Med. 1994;13:S9. [Google Scholar]
  135. Dittrich HC, Bales GL, Kuvelas T, et al. Myocardial contrast echocardiography in experimental coronary artery occlusion with a new intravenously administered contrast agent. J Am Soc Echocardiogr. 1995a;8:465. doi: 10.1016/s0894-7317(05)80333-5. [DOI] [PubMed] [Google Scholar]
  136. Dittrich HC, Kuvelas T, Dadd K, et al. Safety and efficacy of the ultrasound contrast agent FS069 in normal humans: Results of a phase one trial. Circulation. 1995b;92:1. [Google Scholar]
  137. Doida Y, Miller MW. Failure to confirm an increase in unscheduled DNA synthesis in sonicated mammalian cells in vitro. Ultrasonics. 1992;30:35. doi: 10.1016/0041-624x(92)90029-l. [DOI] [PubMed] [Google Scholar]
  138. Doida Y, Miller MW, Cox C, et al. Confirmation of an ultrasound-induced mutation in two in vitro mammalian cell lines. Ultrasound Med Biol. 1990;16:699. doi: 10.1016/0301-5629(90)90103-j. [DOI] [PubMed] [Google Scholar]
  139. Dooley DA, Sacks PG, Miller MW. Production of thymine base damage in ultrasound exposed EMT6 mouse mammary sarcoma cells. Radiat Res. 1984;97:71. [PubMed] [Google Scholar]
  140. Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg. 1989;101:153. doi: 10.1007/BF00436764. [DOI] [PubMed] [Google Scholar]
  141. Duck F. Estimating in situ exposure in the presence of acoustic nonlinearities. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  142. Duck FA, Martin K. Trends in diagnostic ultrasound exposure. Phys Med Biol. 1991;36:1423. doi: 10.1088/0031-9155/36/11/002. [DOI] [PubMed] [Google Scholar]
  143. Duck FA, Starritt HC, Aindow JD, et al. The output of pulse-echo ultrasound equipment: A survey of powers, pressures and intensities. Br J Radiol. 1985;58:989. doi: 10.1259/0007-1285-58-694-989. [DOI] [PubMed] [Google Scholar]
  144. Duck FA, Starritt HC, Anderson SP. A survey of the acoustic output of ultrasonic Doppler equipment. Clinical Physics and Physiological Measurement. 1987;8:39. doi: 10.1088/0143-0815/8/1/002. [DOI] [PubMed] [Google Scholar]
  145. Dujic Z, Eterovic D, Denoble P, et al. Effect of a single air dive on pulmonary diffusing capacity in professional divers. J Appl Physiol. 1993;74:55. doi: 10.1152/jappl.1993.74.1.55. [DOI] [PubMed] [Google Scholar]
  146. Dunnill MS. Postnatal growth of the lung. Thorax. 1962;17:329. [Google Scholar]
  147. Dyson M, Brookes M. Stimulation of bone repair by ultrasound. Ultrasound: 1982 Proceedings of the Third Meeting of the World Federation of Ultrasound in Medicine and Biology, Brighton England, July 1982. Ultrasound Med Biol. 1982;8(Supplement 1):50. [Google Scholar]
  148. Dyson M, Woodward B, Pond JB. Flow of red blood cells stopped by ultrasound. Nature (London) 1971;232:572. doi: 10.1038/232572a0. [DOI] [PubMed] [Google Scholar]
  149. Eckenhoff RG, Olstad CS, Carrod G. Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol. 1990;69:914. doi: 10.1152/jappl.1990.69.3.914. [DOI] [PubMed] [Google Scholar]
  150. Edmonds P. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  151. Eisenmenger W. Dynamic properties of the surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10 kc/s to 1.5 Mc/s. Acustica. 1959;9:327. [Google Scholar]
  152. Ellwart JW, Brettel H, Kober LO. Cell membrane damage by ultrasound at different cell concentrations. Ultrasound Med Biol. 1988;14:43. doi: 10.1016/0301-5629(88)90162-7. [DOI] [PubMed] [Google Scholar]
  153. Endl E, Steinbach P, Hofstadter F. Flow cytometric analysis of cell suspensions exposed to shock waves in the presence of the radical sensitve dye hydroethidine. Ultrasound Med Biol. 1995;21:569. doi: 10.1016/0301-5629(94)00133-x. [DOI] [PubMed] [Google Scholar]
  154. Everbach EC, Makin IRS, Azadniv M, et al. Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro. Ultrasound Med Biol. 1997;23:619. doi: 10.1016/s0301-5629(97)00039-2. [DOI] [PubMed] [Google Scholar]
  155. Everbach EC, Makin IRS, Francis C, et al. Effect of acoustic cavitation on platelets in the presence of an echo-contrast agent. Ultrasound Med Biol. 1996a;24:125. doi: 10.1016/s0301-5629(97)00233-0. [DOI] [PubMed] [Google Scholar]
  156. Everbach EC, Makin IRS, Porter TR, et al. Acoustic emissions of a fluorocarbon echo-contrast agent undergoing inertial cavitation. Circulation. 1996b;94:1. [Google Scholar]
  157. Feinstein SB, Cheirif J, Ten Cate FJ, et al. Safety and efficacy of a new transpulmonary ultrasound contrast agent: Initial multicenter clinical results. J Am Coll Cardiol. 1990;16:316. doi: 10.1016/0735-1097(90)90580-i. [DOI] [PubMed] [Google Scholar]
  158. Feinstein SB, Keller MW, Kerber RE, et al. Sonicated echocardiographic contrast agents: Reproducibility studies. J Am Soc Echocardiogr. 1989;2:125. doi: 10.1016/s0894-7317(89)80075-6. [DOI] [PubMed] [Google Scholar]
  159. Fischer JE, Acuff-Smith K-D, Schilling MA, et al. Teratologic evaluation of rats prenatally exposed to pulsed-wave ultrasound. Teratology. 1994;49:150. doi: 10.1002/tera.1420490211. [DOI] [PubMed] [Google Scholar]
  160. Flynn HG. Cavitation dynamics, I. A mathematical formulation. J Acoust Soc Am. 1975;57:1379. [Google Scholar]
  161. Flynn HG. Generation of transient cavities in liquids by microsecond pulses of ultrasound. J Acoust Soc Am. 1982;72:1926. [Google Scholar]
  162. Flynn HG. Physics of acoustic cavitation in liquids. In: Mason WP, editor. Physical Acoustics. lB. New York, New York: Academic Press; 1964. p. 57. [Google Scholar]
  163. Flynn H, Church CC. Transient pulsations of small gas bubbles in water. J Acoust Soc Am. 1988;84:985. doi: 10.1121/1.397253. [DOI] [PubMed] [Google Scholar]
  164. Food and Drug Administration. Diagnostic Ultrasound Guidance for 1993 [February 17, 1993, Revised 510(k)] Rockville, MD: Center for Devices and Radiological Health, Food and Drug Administration, US Department of Health and Human Services; 1993. [Google Scholar]
  165. Food and Drug Administration. Use of Mechanical Index in Place of Spatial Peak, Pulse Average Intensity in Determining Substantial Equivalence. Rockville, MD: Center for Devices and Radiological Health, Food and Drug Administration, US Department of Health and Human Services; 1994. [Google Scholar]
  166. Forsberg F, Liu JB, Merton DA, et al. Contrast injection with and without hypobaric activation. J Ultrasound Med. 1996;15:S19. [Google Scholar]
  167. Forsberg F, Liu JB, Merton DA, et al. Parenchymal enhancement and tumor visualization using a new sonographic contrast agent. J Ultrasound Med. 1995;14:949. doi: 10.7863/jum.1995.14.12.949. [DOI] [PubMed] [Google Scholar]
  168. Fowlkes JB, Crum LA. Cavitation threshold measurements for microsecond pulses of ultrasound. J Acoust Soc Am. 1988;83:2190. doi: 10.1121/1.396347. [DOI] [PubMed] [Google Scholar]
  169. Fox FE, Herzfield KF. Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am. 1954;26:984. [Google Scholar]
  170. Francis CW, Önundarson PT, Carstensen EL, et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest. 1992;90:2063. doi: 10.1172/JCI116088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Fritzsch T, Hilmann J, Kämpfe M, et al. SHU 508, a transpulmonary echocontrast agent. Invest Radiol. 1990;25:S160. doi: 10.1097/00004424-199009001-00069. [DOI] [PubMed] [Google Scholar]
  172. Fritzsch T, Schartl M, Siegert J. Preclinical and clinical results with an ultrasonic contrast agent. Invest Radiol. 1988;23:S302. doi: 10.1097/00004424-198809001-00067. [DOI] [PubMed] [Google Scholar]
  173. Frizzell LA. Threshold dosages for damage to mammalian liver by high intensity focused ultrasound. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1988;35:578. doi: 10.1109/58.8036. [DOI] [PubMed] [Google Scholar]
  174. Frizzell LA, Carstensen EL, Dyro J. Shear properties of mammalian tissues at low megaHertz frequencies. J Acoust Soc Am. 1976;60:1409. doi: 10.1121/1.381236. [DOI] [PubMed] [Google Scholar]
  175. Frizzell LA, Chen E, Lee C. Effects of pulsed ultrasound on the mouse neonate: Hind limb paralysis and lung hemorrhage. Ultrasound Med Biol. 1994;20:53. doi: 10.1016/0301-5629(94)90017-5. [DOI] [PubMed] [Google Scholar]
  176. Frizzell LA, Lee CS, Aschenbach PD, et al. Involvement of ultrasonically induced cavitation in the production of hind limb paralysis of the mouse neonate. J Acoust Soc Am. 1983;74:1062. doi: 10.1121/1.389941. [DOI] [PubMed] [Google Scholar]
  177. Fry FJ, Kossof G, Eggleton RC, et al. Threshold ultrasonic dosages for structural changes in mammalian brain. J Acoust Soc Am. 1970;48:1413. doi: 10.1121/1.1912301. [DOI] [PubMed] [Google Scholar]
  178. Fry WJ. Action of ultrasound on nerve tissue—A review. J Acoust Soc Am. 1953;25:1. [Google Scholar]
  179. Fu Y-K, Kaufman GE, Miller MW, et al. Modification by cysteamine of ultrasound lethality to Chinese hamster V-79 cells. Radiat Res. 1979;80:575. [PubMed] [Google Scholar]
  180. Fu Y-K, Miller MW, Griffiths TD, et al. Ultrasound lethality to synchronous and asynchronous Chinese hamster V-79 cells. Ultrasound Med Biol. 1980;6:39. doi: 10.1016/0301-5629(80)90062-9. [DOI] [PubMed] [Google Scholar]
  181. Fujiwaki S, Saito J, Horikoshi H, et al. Diagnosis of intrauterine disorders by sonohysterography. (Japanese) Acta Obstet Gynaecol Jpn. 1995;47:437. [PubMed] [Google Scholar]
  182. Galiuto L, Marchese A, Cavallari D, et al. Evaluation of postinfarction viable myocardium at jeopardy by dobutamine echocardiography and myocardial contrast echocardiography. Echocardiography. 1994;11:337. [Google Scholar]
  183. Ganong WF, editor. Review of Medical Physiology. Los Altos, CA: Lange Medical Publications; 1967. Respiration; p. 514. [Google Scholar]
  184. Gaucherand P, Piacenza JM, Salle B, et al. Sonohysterography of the uterine cavity: Preliminary investigations. J Clin Ultrasound. 1995;23:339. doi: 10.1002/jcu.1870230603. [DOI] [PubMed] [Google Scholar]
  185. Gavrilov LR, Tsirulnikov EM, Davies I. Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med Biol. 1996;22:179. doi: 10.1016/0301-5629(96)83782-3. [DOI] [PubMed] [Google Scholar]
  186. Geldhof AA, DeVoogt HJ, Rao BR. High energy shock waves do not affect either primary tumor growth or metastasis of prostate carcinoma, R-3327-MatLyLu. Urol Res. 1989;17:9. doi: 10.1007/BF00261041. [DOI] [PubMed] [Google Scholar]
  187. Georgiadis D, Baumgartner RW, Karatschai R, et al. Further evidence of gaseous embolic material in patients with artificial heart valves. J Thorac Cardiovasc Surg. 1998;115:808. doi: 10.1016/S0022-5223(98)70359-9. [DOI] [PubMed] [Google Scholar]
  188. Glen SK, Georgiadis D, Grosset DG, et al. Transcranial Doppler ultrasound in commercial air divers: Afield study including cases with right-to-left shunting. Undersea Hyperb Med. 1995;22:129. [PubMed] [Google Scholar]
  189. Goldberg BB. Ultrasound contrast agents. Clin Diagn Ultrasound. 1993a;28:35. [PubMed] [Google Scholar]
  190. Goldberg BB, Liu JB, Burns PN, et al. Galactose-based intravenous sonographic contrast agent: Experimental studies. J Ultrasound Med. 1993b;12:463. doi: 10.7863/jum.1993.12.8.463. [DOI] [PubMed] [Google Scholar]
  191. Goldberg BB, Liu JB, Forsberg F. Ultrasound contrast agents: A review. Ultrasound Med Biol. 1994;20:319. doi: 10.1016/0301-5629(94)90001-9. [DOI] [PubMed] [Google Scholar]
  192. Goldstein SR. Saline infusion sonohysterography. Clin Obstet Gynaecol. 1996;39:248. doi: 10.1097/00003081-199603000-00023. [DOI] [PubMed] [Google Scholar]
  193. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol. 1968;3:356. doi: 10.1097/00004424-196809000-00011. [DOI] [PubMed] [Google Scholar]
  194. Grauer SE, Xu J, Gong Z, et al. Aerosomes™ MRX115 produces myocardial opacification without hemo-dynamic effects after intravenous injections in primates. Circulation. 1995;92:1. [Google Scholar]
  195. Grauer SE, Xu J, Pantely GA, et al. MRX 115, an echocardiographic contrast agent, produces myocardial opacification after intravenous injection in primates: Studies before and after occlusion of the left anterior descending coronary artery. Acad Radiol. 1996;3:S405. doi: 10.1016/s1076-6332(96)80598-8. [DOI] [PubMed] [Google Scholar]
  196. Grayburn PA, Erickson JM, Escobar J, et al. Peripheral intravenous myocardial contrast echocardiography using a 2% dodecafluoropentane emulsion: Identification of myocardial risk area and infarct size in the canine model of ischemia. J Am Coll Cardiol. 1995;26:1340. doi: 10.1016/0735-1097(95)00306-1. [DOI] [PubMed] [Google Scholar]
  197. Hansen BW. High-speed photographic studies of droplet formation at 20 kHz ultrasonic atomization of oil. Ultrasonics. 1970;8:97. [Google Scholar]
  198. Harpaz D, Chen X, Francis CW, et al. Ultrasound enhancement of thrombolysis and reperfusion in vitro. J Am Coll Cardiol. 1993;21:1507. doi: 10.1016/0735-1097(93)90331-t. [DOI] [PubMed] [Google Scholar]
  199. Harrison GH, Balcer-Kubiczek EK, Eddy HA. Potentiation of chemotherapy by low-level ultrasound. Int J Radiat Biol. 1991;59:1453. doi: 10.1080/09553009114551301. [DOI] [PubMed] [Google Scholar]
  200. Harrison GH, Eddy HA, Wang JP, et al. Microscopic lung alterations and reduction of respiration rate in insonated anesthetized swine. Ultrasound Med Biol. 1995;21:981. doi: 10.1016/0301-5629(95)97511-q. [DOI] [PubMed] [Google Scholar]
  201. Hartman C, Child SZ, Mayer R, et al. Lung damage from exposure to the fields of an electrohydraulic lithotripter. Ultrasound Med Biol. 1990;16:675. doi: 10.1016/0301-5629(90)90100-q. [DOI] [PubMed] [Google Scholar]
  202. Harvey EN, Barnes DK, McElroy WD, et al. Bubble formation in animals I: Physical factors. J Cell Comp Physiol. 1944;24:1. [Google Scholar]
  203. Harvey EN, Loomis L. High frequency sound waves of small intensity and their biological effects. Nature. 1928;121:622. [Google Scholar]
  204. Harvey W, Dyson M, Pond JB, et al. The in vitro stimulation of protein synthesis in human fibroblasts by therapeutic levels of ultrasound. In: Kazner E, de Vlieger M, Muller HR, McCready VE, editors. Proceedings of the Second European Congress on Ultrasonics in Medicine. Excerpta Medica International Congress series no. 363. Amsterdam: Excerpta Medica Foundation; 1982. pp. 10–21. [Google Scholar]
  205. Hawgood S, Shiffer K. Structures and properties of the surfactant-associated proteins. Annu Rev Physiol. 1991;53:375. doi: 10.1146/annurev.ph.53.030191.002111. [DOI] [PubMed] [Google Scholar]
  206. Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg [Am] 1994;76:26. doi: 10.2106/00004623-199401000-00004. [DOI] [PubMed] [Google Scholar]
  207. Henglein A. Sonochemistry: Historical developments and modern aspects. Ultrasonics. 1987;25:6. [Google Scholar]
  208. Henglein A, Kormann C. Scavenging of OH radicals produced in the sonolysis of water. Int J Radiat Biol. 1985;48:251. doi: 10.1080/09553008514551241. [DOI] [PubMed] [Google Scholar]
  209. Herbertz J. Spontaneous cavitation in liquids free of nuclei. Fortschritte der Akustik DAGA. 1988;14:439. [Google Scholar]
  210. Hildebrandt J, Young AC. Anatomy and physics of respiration. In: Ruch TC, Patton HD, editors. Physiology and Biophysics. 19. Philadelphia, PA: W.B. Saunders; 1966. p. 733. [Google Scholar]
  211. Hislop A, Howard S, Fairweather DV. Morphometric studies on the structural development of the lung in Macaca fasicularis during fetal and postnatal life. J Anat. 1984;138:95. [PMC free article] [PubMed] [Google Scholar]
  212. Holland CK, Apfel RE. An improved theory for the prediction of microcavitation thresholds. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1989;36:204. doi: 10.1109/58.19152. [DOI] [PubMed] [Google Scholar]
  213. Holland CK, Apfel RE. Thresholds for transient cavitation in a controlled nuclei environment. J Acoust Soc Am. 1990;88:2059. doi: 10.1121/1.400102. [DOI] [PubMed] [Google Scholar]
  214. Holland CK, Deng CX, Apfel RE, et al. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med Biol. 1996;22:917. doi: 10.1016/0301-5629(96)00083-x. [DOI] [PubMed] [Google Scholar]
  215. Holland CK, Roy RA, Apfel RE, et al. In vitro detection of cavitation induced by a diagnostic ultrasound system. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1992;39:95. doi: 10.1109/58.166815. [DOI] [PubMed] [Google Scholar]
  216. Holland CK, Sandstrom K, Zheng X, et al. The acoustic field of a pulsed Doppler diagnostic ultrasound system near a pressure-release surface. J Acoust Soc Am. 1994;95:2855. [Google Scholar]
  217. Hong AS, Chae JS, Dublin SB, et al. Ultrasonic clot dissolution: An in vitro study. Am Heart J. 1990;2:418. doi: 10.1016/0002-8703(90)90088-f. [DOI] [PubMed] [Google Scholar]
  218. Hoshi S, Orikasa S, Kuwahara M-A, et al. High energy shock wave treatment on implanted urinary bladder cancer in rabbits. J Urol. 1991;146:439. doi: 10.1016/s0022-5347(17)37820-5. [DOI] [PubMed] [Google Scholar]
  219. Howard D, Sturtevant B. In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound Med Biol. 1997;23:1107. doi: 10.1016/s0301-5629(97)00081-1. [DOI] [PubMed] [Google Scholar]
  220. Huber P, Debus P, Peschke P, et al. In vivo detection of ultrasonically induced cavitation by a fibre-optic technique. Ultrasound Med Biol. 1994;20:811. doi: 10.1016/0301-5629(94)90038-8. [DOI] [PubMed] [Google Scholar]
  221. Hug O, Pape R. Nachweis der Ultraschallkavitation in Gewebe. Strahlentherapies. 1954;94:79. [PubMed] [Google Scholar]
  222. Hynynen K. The threshold for thermally significant cavitation in dog’s thigh muscle in vivo. Ultrasound Med Biol. 1991;17:157. doi: 10.1016/0301-5629(91)90123-e. [DOI] [PubMed] [Google Scholar]
  223. Hynynen K, Chung AH, Colucci V, et al. Potential adverse effects of high-intensity ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol. 1996;22:193. doi: 10.1016/0301-5629(95)02044-6. [DOI] [PubMed] [Google Scholar]
  224. Inoue M, Church CC, Brayman AA, et al. Confirmation of the protective effect of cysteamine in in vitro ultrasound exposure. Ultrasonics. 1989;27:362. doi: 10.1016/0041-624x(89)90035-8. [DOI] [PubMed] [Google Scholar]
  225. Inoue M, Miller MW, Church CC. An alternative explanation for a postulated non-thermal non-cavitational ultrasound mechanism of action on in vitro cells at hyperthermic temperature. Ultrasonics. 1990;28:185. [Google Scholar]
  226. Ishimaru A. Wave Propagation and Scattering in Random Media. New York, NY: Academic Press; 1978. [Google Scholar]
  227. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85:1699. doi: 10.1161/01.cir.85.5.1699. [DOI] [PubMed] [Google Scholar]
  228. Ivey JA, Gardner EA, Fowlkes JB, et al. Acoustic generation of intra-arterial contrast boluses. Ultrasound Med Biol. 1995;21:757. doi: 10.1016/0301-5629(95)00015-j. [DOI] [PubMed] [Google Scholar]
  229. Jakobsen JÅ, Egge TS, Abildgaard A, et al. Infusion in vascular and renal sonography. Acad Radiol. 1996;3:S322. doi: 10.1016/s1076-6332(96)80571-x. [DOI] [PubMed] [Google Scholar]
  230. Jayaweera A, Edwards N, Glasheen WP, et al. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res. 1994;74:1157. doi: 10.1161/01.res.74.6.1157. [DOI] [PubMed] [Google Scholar]
  231. Jeffers RJ, Feng RQ, Fowlkes JB, et al. Dimethylforamide as an enhancer of cavitation-induced cell lysis in vitro. J Acoust Soc Am. 1995;97:669. doi: 10.1121/1.412289. [DOI] [PubMed] [Google Scholar]
  232. Jones HW, Hoerr NL, Osol A, editors. Blakiston’s New Gould Medical Dictionary. 3. NY, New York: McGraw Hill; 1972. [Google Scholar]
  233. Jones JH, Longworth KE. Gas exchange at rest and during exercise in mammals. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 271–308. [Google Scholar]
  234. Kaps M, Schaffer P, Beller KD, et al. Phase I: Transcranial echo contrast studies in healthy volunteers. Stroke. 1995;26:2048. doi: 10.1161/01.str.26.11.2048. [DOI] [PubMed] [Google Scholar]
  235. Kaufman GE. Mutagenicity of ultrasound in cultured mammalian cells. Ultrasound Med Biol. 1985;11:497. doi: 10.1016/0301-5629(85)90162-0. [DOI] [PubMed] [Google Scholar]
  236. Kaufman GE, Miller MW, Griffiths TD, et al. Lysis and viability of cultured mammalian cells exposed to 1 MHz ultrasound. Ultrasound Med Biol. 1977;3:21. doi: 10.1016/0301-5629(77)90117-x. [DOI] [PubMed] [Google Scholar]
  237. Kaufman GE, Miller MW. Growth retardation in Chinese hamster V-79 cells exposed to 1 MHz ultrasound. Ultrasound Med Biol. 1978;4:139. doi: 10.1016/0301-5629(78)90039-x. [DOI] [PubMed] [Google Scholar]
  238. Kaul S, Pandian N, Okada RD, et al. Contrast echocardiography in acute myocardial ischemia: I. In vivo determination of total left ventricular: Area at risk. J Am Coll Cardiol. 1984;4:1272. doi: 10.1016/s0735-1097(84)80149-7. [DOI] [PubMed] [Google Scholar]
  239. Kay JM. Blood vessels of the lung. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 163–174. [Google Scholar]
  240. Kedar RP, Cosgrove D, McCready VR, et al. Microbubble contrast agent for color Doppler US: Effect on breast masses. Work in progress Radiology. 1996;198:679. doi: 10.1148/radiology.198.3.8628854. [DOI] [PubMed] [Google Scholar]
  241. Keller MW, Feinstein SB, Briller RA, et al. Automated production and analysis of echo contrast agents. J Ultrasound Med. 1986;5:493. doi: 10.7863/jum.1986.5.9.493. [DOI] [PubMed] [Google Scholar]
  242. Keller MW, Feinstein SB, Watson DD. Successful left ventricular opacification following peripheral venous injection of sonicated contrast agent: An experimental evaluation. Am Heart J. 1987;114:570. doi: 10.1016/0002-8703(87)90754-x. [DOI] [PubMed] [Google Scholar]
  243. Kessel D, Jeffers RJ, Fowlkes JB, et al. Porphyrin-induced enhancement of ultrasound cytotoxicity. Int J Radiat Biol. 1994;66:221. doi: 10.1080/09553009414551131. [DOI] [PubMed] [Google Scholar]
  244. Killam AL, Greener Y, McFerran BA, et al. Lack of bioeffects of ultrasound energy after intravenous administration of FS069 (Optison™) in the anesthetized rabbit. J Ultrasound Med. 1998;17:349. doi: 10.7863/jum.1998.17.6.349. [DOI] [PubMed] [Google Scholar]
  245. Kim HJ, Greenleaf JF, Kinnick RR, et al. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7:1339. doi: 10.1089/hum.1996.7.11-1339. [DOI] [PubMed] [Google Scholar]
  246. Kirton OC, DeHaven CB, Morgan JP, et al. Elevated imposed work of breathing masquerading as ventilator weaning intolerance. Chest. 1995;108:1021. doi: 10.1378/chest.108.4.1021. [DOI] [PubMed] [Google Scholar]
  247. Klibanov AL, Ferrara KW, Hughes MS, et al. Direct video microscopic observation of the dynamic effects of medical ultrasound on ultrasound contrast microspheres. Investigative Radiology. 1998;33:863. doi: 10.1097/00004424-199812000-00004. [DOI] [PubMed] [Google Scholar]
  248. Kodama T, Takayama K. Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound Med Biol. 1998;24:723. doi: 10.1016/s0301-5629(98)00022-2. [DOI] [PubMed] [Google Scholar]
  249. Kondo T, Gamson J, Mitchell JB, et al. Free radical formation and cell lysis induced by ultrasound in the presence of different rare gases. Int J Radiat Biol. 1988a;54:955. doi: 10.1080/09553008814552351. [DOI] [PubMed] [Google Scholar]
  250. Kondo T, Kano E. Effect of free radicals induced by ultrasonic cavitation on cell killing. Int J Radiat Biol. 1988b;54:475. doi: 10.1080/09553008814551841. [DOI] [PubMed] [Google Scholar]
  251. Kondo T, Kano E. Enhancement of hyperthermic cell killing by non-thermal effect of ultrasound. Int J Radiat Biol. 1987;51:157. doi: 10.1080/09553008714550591. [DOI] [PubMed] [Google Scholar]
  252. Kondo T, Lodaira T, Kano E. Free radical formation induced by ultrasound and its effects on strand breakage in DNA of cultured FM3A cells. Free Radic Res Commun. 1993;19:S193. doi: 10.3109/10715769309056s193. [DOI] [PubMed] [Google Scholar]
  253. Kornowski R, Meltzer RS, Chernine A, et al. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation. 1994;89:339. doi: 10.1161/01.cir.89.1.339. [DOI] [PubMed] [Google Scholar]
  254. Kremkau FW. Mechanical index rationale (Abstract) J Ultrasound Med. 1991;10:S32. [Google Scholar]
  255. Krishna PD, Newhouse VL. Second harmonic characteristics of the ultrasound contrast agents Albunex® and FS069. Ultrasound Med Biol. 1997;23:453. doi: 10.1016/s0301-5629(96)00217-7. [DOI] [PubMed] [Google Scholar]
  256. Kristiansen TK. The effect of low power specifically programmed ultrasound on the healing time of fresh fractures using a Colles’ model. J Orthop Trauma. 1990;4:227. [Google Scholar]
  257. Kudo S, Kinoshita H, Hirohashi K, et al. Preoperative localization of hepatomas by sonography with microbubbles of carbon dioxide. Am J Roentgenol. 1994;163:1405. doi: 10.2214/ajr.163.6.7992737. [DOI] [PubMed] [Google Scholar]
  258. Kudo M, Tomita S, Tochio H, et al. Small hepatocellular carcinoma: Diagnosis with US angiography with intraarterial CO2 microbubbles. Radiology. 1992a;182:155. doi: 10.1148/radiology.182.1.1309216. [DOI] [PubMed] [Google Scholar]
  259. Kudo M, Tomita S, Tochio H, et al. Sonography with intraarterial infusion of carbon dioxide microbubbles (sonographic angiography): Value in differential diagnosis of hepatic tumors. Am J Roentgenol. 1992b;158:65. doi: 10.2214/ajr.158.1.1309220. [DOI] [PubMed] [Google Scholar]
  260. Kuwahara M, Ioritani N, Kanube K, et al. Hyperechoic region induced by focused shock waves in vitro and in vivo: Possibility of acoustic cavitation bubbles. J Lithotr Stone Dis. 1989;1:282. [Google Scholar]
  261. Kwak HY, Panton RL. Tensile-strength of simple liquids predicted by a model of molecular-interactions. J Phys D Appl Phys. 1985;18:647. [Google Scholar]
  262. Lafay V, Boussuges A, Ambrosi P, et al. Doppler-echocardiography study of cardiac function during a 36 atm (3,650 kPa) human dive. Undersea Hyperb Med. 1997;24:67. [PubMed] [Google Scholar]
  263. Lanza GM, Wallace KD, Scott MJ, et al. Thrombi/arteries: A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation. 1996;94:3334. doi: 10.1161/01.cir.94.12.3334. [DOI] [PubMed] [Google Scholar]
  264. Lauer CG, Burge R, Tang DB, et al. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation. 1992;86:1257. doi: 10.1161/01.cir.86.4.1257. [DOI] [PubMed] [Google Scholar]
  265. Lee CS, Frizzell LA. Exposure levels for ultrasonic cavitation in the mouse neonate. Ultrasound Med Biol. 1988;14:735. doi: 10.1016/0301-5629(88)90029-4. [DOI] [PubMed] [Google Scholar]
  266. Lehmann JF, Herrick JF. Biologic reactions to cavitation, a consideration for ultrasonic therapy. Arch Phys Med Rehabil. 1953;34:86. [PubMed] [Google Scholar]
  267. Liebeskind D, Bases R, Elequin F, et al. Diagnostic ultrasound: Effects on the DNAand growth patterns of animal cells. Radiology. 1979a;131:177. doi: 10.1148/131.1.177. [DOI] [PubMed] [Google Scholar]
  268. Liebeskind D, Bases R, Mendez F, et al. Sister chromatid exchanges in human lymphocytes after exposure to diagnostic ultrasound. Science. 1979b;205:1273. doi: 10.1126/science.472742. [DOI] [PubMed] [Google Scholar]
  269. Liebeskind D, Padawer J, Wolley, et al. Diagnostic ultrasound time-lapse and transmission electron microscopic studies of cells insonated in vitro. Br J Cancer Suppl. 1982;45:176. [PMC free article] [PubMed] [Google Scholar]
  270. Litscher G, Schwarz G, Lenhard H, et al. Embolism detection in transcranial Doppler ultrasound-Most recent technical developments. Biomed Tech (Berl) 1997;42(Suppl):515. doi: 10.1515/bmte.1997.42.s2.515. [DOI] [PubMed] [Google Scholar]
  271. Loverock P, ter Haar G, Omerod MG, et al. The effect of ultrasound on the cytotoxicity of adriamycin. Br J Radiol. 1990;63:542. doi: 10.1259/0007-1285-63-751-542. [DOI] [PubMed] [Google Scholar]
  272. Luo H, Steffen W, Cercek B, et al. Enhancement of thrombolysis by external ultrasound. Am Heart J. 1993;125:1564. doi: 10.1016/0002-8703(93)90741-q. [DOI] [PubMed] [Google Scholar]
  273. Macdonald M, Madsen E. Nonlinear propagation in a liquid tissue-mimicking medium. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  274. MacRobbie AG, Raeman CH, Child SZ, et al. Thresholds for premature contractions in murine hearts exposed to pulsed ultrasound. Ultrasound Med Biol. 1997;23:761. doi: 10.1016/s0301-5629(97)00049-5. [DOI] [PubMed] [Google Scholar]
  275. Madanshetty SI, Roy RA, Apfel RE. Acoustic microcavitation: Its active and passive acoustic detection. J Acoust Soc Am. 1991;90:1515. doi: 10.1121/1.401891. [DOI] [PubMed] [Google Scholar]
  276. Makin IRS, Everbach EC, Porter T, et al. Comparison of cavitational activity of echocontrast agents filled with different gases. Circulation. 1995;92 (Suppl I):1. [Google Scholar]
  277. Markus H. Transcranial Doppler detection of circulating cerebral emboli. A Review Stroke. 1993;24:1246. doi: 10.1161/01.str.24.8.1246. [DOI] [PubMed] [Google Scholar]
  278. Maroulis GB, Parsons AK, Yeko TR. Hydro-gynecography: A new technique enables vaginal sonography to visualize pelvic adhesions and other pelvic structures. Fertil Steril. 1992;58:1073. doi: 10.1016/s0015-0282(16)55465-x. [DOI] [PubMed] [Google Scholar]
  279. Marsh JN, Hall CS, Hughes MS, et al. Broadband through transmission signal loss measurements of Albunex® at concentrations approaching in vivo doses. J Acoust Soc Am. 1997;101:1155. [Google Scholar]
  280. Mayer R, Schenk E, Child SZ, et al. Pressure threshold for shock wave induced renal hemorrhage. J Urol. 1990;144:1505. doi: 10.1016/s0022-5347(17)39787-2. [DOI] [PubMed] [Google Scholar]
  281. Medwin H. Counting bubbles acoustically: A review. Ultrasonics. 1977;15:7. [Google Scholar]
  282. Meerbaum S, Meltzer RS, editors. Echocardiography. Boston, MA: Kluwer/Martinus Nijhoff; 1989. Myocardial Contrast Two-Dimensional. [Google Scholar]
  283. Meltzer RS, Roelandt J, editors. Contrast Echocardiography. The Hague; The Netherlands, Martinus Nijhoff: 1982a. [Google Scholar]
  284. Meltzer RS, Adsumelli R, Risher W, et al. Lack of lung hemorrhage in humans after intraoperative trans-esophageal echocardiography with ultrasound conditions similar to those causing lung hemorrhage in laboratory animals. J Am Soc Echocardiogr. 1998;11:57. doi: 10.1016/s0894-7317(98)70120-8. [DOI] [PubMed] [Google Scholar]
  285. Meltzer RS, Porder JB, Porder K. Ultrasound bioeffects, mechanisms, and safety. In: Siegel R, editor. Ultrasound Angioplasty. Boston, MA: Kluwer Academic Publishers; 1986. [Google Scholar]
  286. Meltzer RS, Schwarz KQ, Mottley JG, et al. Therapeutic cardiac ultrasound. Am J Cardiol. 1991;67:422. doi: 10.1016/0002-9149(91)90053-n. [DOI] [PubMed] [Google Scholar]
  287. Meltzer RS, Vermeulen HWJ, Valk NK, et al. New echocardiographic contrast agents: Transmission through the lungs and myocardial perfusion imaging. J Cardiovasc Ultrasonogr. 1982b;1:277. [Google Scholar]
  288. Mercer RR, Crapo JP. Architecture of the acinus. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 109–119. [Google Scholar]
  289. Metzger-Rose C, Wright WH, Baker MR, et al. Effects of phospholipid-coated microbubbles (MRX-115) on the detection of testicular ischemia in dogs. Acad Radiol. 1996;3:S314. doi: 10.1016/s1076-6332(96)80568-x. [DOI] [PubMed] [Google Scholar]
  290. Meza M, Greener Y, Hunt R, et al. Myocardial contrast echocardiography: Reliable, safe, and efficacious myocardial perfusion assessment after intravenous injections of a new echocardiographic contrast agent. Am Heart J. 1996;132:871. doi: 10.1016/s0002-8703(96)90324-5. [DOI] [PubMed] [Google Scholar]
  291. Mihran RT, Barnes FS, Wachtel H. Temporally specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med Biol. 1990;16:297. doi: 10.1016/0301-5629(90)90008-z. [DOI] [PubMed] [Google Scholar]
  292. Miller DL. The influence of hematocrit on hemolysis by ultrasonically activated gas-filled micropores. Ultrasound Med Biol. 1988;14:293. doi: 10.1016/0301-5629(88)90095-6. [DOI] [PubMed] [Google Scholar]
  293. Miller DL, Bao S. The relationship of scattered subharmonic, 3.3 MHz fundamental and second harmonic signals to damage of monolayer cells by ultrasonically activated Albunex®. J Acoust Soc Am. 1998a;103:1183. doi: 10.1121/1.421250. [DOI] [PubMed] [Google Scholar]
  294. Miller DL, Geis RA. Enhancement of ultrasonically induced hemolysis by perfluorocarbon-based compared to air-based echo contrast agents. Ultrasound Med Biol. 1998b;24:285. doi: 10.1016/s0301-5629(97)00267-6. [DOI] [PubMed] [Google Scholar]
  295. Miller DL, Geis RA. Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound Med Biol. 1998c;24:1201. doi: 10.1016/s0301-5629(98)00063-5. [DOI] [PubMed] [Google Scholar]
  296. Miller DL, Geis RA. The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound Med Biol. 1998d;24:123. doi: 10.1016/s0301-5629(97)00209-3. [DOI] [PubMed] [Google Scholar]
  297. Miller DL, Geis RA, Chrisler WB. Ultrasonically induced hemolysis at high cell and gas body concentrations in a thin-disc exposure chamber. Ultrasound Med Biol. 1997;23:625. doi: 10.1016/s0301-5629(97)00042-2. [DOI] [PubMed] [Google Scholar]
  298. Miller DL, Reese JA, Frazier ME. Single strand DNA breaks in human lymphocytes induced by ultrasound in vitro. Ultrasound Med Biol. 1989;15:765. doi: 10.1016/0301-5629(89)90117-8. [DOI] [PubMed] [Google Scholar]
  299. Miller DL, Thomas RM. Contrast agent gas-bodies enhance hemolysis induced by lithotripter shock-waves and high-intensity focused ultrasound in whole blood. Ultrasound Med Biol. 1996a;22:1089. doi: 10.1016/s0301-5629(96)00126-3. [DOI] [PubMed] [Google Scholar]
  300. Miller DL, Thomas RM. Frequency dependence of cavitation activity in a rotating tube exposure system compared to the Mechanical Index. J Acoust Soc. 1993;93:3475. doi: 10.1121/1.405677. [DOI] [PubMed] [Google Scholar]
  301. Miller DL, Thomas RM. Heating as a mechanism for ultrasonically induced petechial hemorrhages in mouse intestine. Ultrasound Med Biol. 1994;20:493. doi: 10.1016/0301-5629(94)90104-x. [DOI] [PubMed] [Google Scholar]
  302. Miller DL, Thomas RM. Thresholds for hemorrhages in mouse skin and in intestine induced by lithotripter shock waves. Ultrasound Med Biol. 1995a;21:249. doi: 10.1016/s0301-5629(94)00112-x. [DOI] [PubMed] [Google Scholar]
  303. Miller DL, Thomas RM. The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter shockwaves in vitro. Ultrasound Med Biol. 1996b;22:681. doi: 10.1016/0301-5629(95)02077-2. [DOI] [PubMed] [Google Scholar]
  304. Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol. 1995b;21:1059. doi: 10.1016/0301-5629(95)93252-u. [DOI] [PubMed] [Google Scholar]
  305. Miller DL, Thomas RM, Buschbom RL. Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro. Ultrasound Med Biol. 1995c;21:841. doi: 10.1016/0301-5629(95)00017-l. [DOI] [PubMed] [Google Scholar]
  306. Miller DL, Thomas RM, Frazier ME. Single strand breaks in CHO cell DNA induced by ultrasonic cavitation in vitro. Ultrasound Med Biol. 1991b;17:401. doi: 10.1016/0301-5629(91)90140-r. [DOI] [PubMed] [Google Scholar]
  307. Miller DL, Thomas RM, Frazier ME. Ultrasonic cavitation indirectly induces single strand breaks in DNA of viable cells in vitro by the action of residual hydrogen peroxide. Ultrasound Med Biol. 1991c;17:729. doi: 10.1016/0301-5629(91)90106-7. [DOI] [PubMed] [Google Scholar]
  308. Miller DL, Thomas RM, Williams AR. Mechanisms for hemolysis by ultrasonic cavitation in the rotating exposure system. Ultrasound Med Biol. 1991a;17:171. doi: 10.1016/0301-5629(91)90124-f. [DOI] [PubMed] [Google Scholar]
  309. Miller DL, Williams AR. Bubble cycling as the explanation of the promotion of ultrasonic cavitation in a rotating tube exposure system. Ultrasound Med Biol. 1989;15:641. doi: 10.1016/0301-5629(89)90172-5. [DOI] [PubMed] [Google Scholar]
  310. Miller MW. Does ultrasound induce sister chromatid exchanges? Ultrasound Med Biol. 1985;11:561. doi: 10.1016/0301-5629(85)90026-2. [DOI] [PubMed] [Google Scholar]
  311. Miller MW, Azadniv M, Cox C, et al. Lack of induced increase in sister chromatid exchanges in human lymphocytes exposed to in vivo therapeutic ultrasound. Ultrasound Med Biol. 1991;17:81. doi: 10.1016/0301-5629(91)90012-l. [DOI] [PubMed] [Google Scholar]
  312. Miller MW, Azadniv M, Doida Y, et al. Effect of a stabilized microbubble contrast agent on CW ultrasound-induced red blood cell lysis in vitro. Echocardiography. 1995;12:1. [Google Scholar]
  313. Miller MW, Azadniv M, Petit SE, et al. Sister chromatid exchanges in Chinese hamster ovary cells exposed to high intensity pulsed ultrasound: Inability to confirm previous positive results. Ultrasound Med Biol. 1989;15:255. doi: 10.1016/0301-5629(89)90069-0. [DOI] [PubMed] [Google Scholar]
  314. Miller MW, Brayman AA. Comparative sensitivity of human erythrocytes and lymphocytes to sonolysis by 1 MHz ultrasound. Ultrasound Med Biol. 1997;23:635. doi: 10.1016/s0301-5629(97)00040-9. [DOI] [PubMed] [Google Scholar]
  315. Miller MW, Church CC, Ciaravino V. Time lapse and microscopic examinations of insonated in vitro cells. Ultrasound Med Biol. 1990;16:73. doi: 10.1016/0301-5629(90)90088-t. [DOI] [PubMed] [Google Scholar]
  316. Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996;22:1131. doi: 10.1016/s0301-5629(96)00089-0. [DOI] [PubMed] [Google Scholar]
  317. Mitri FF, Andronikov AD, Perpinyal S, et al. A clinical comparison of sonographic hydrotubation and hysterosalpingography. Br J Obstet Gynaecol. 1991;98:1031. doi: 10.1111/j.1471-0528.1991.tb15342.x. [DOI] [PubMed] [Google Scholar]
  318. Miyoshi N, Misík V, Reisz P. Sonodynamic toxicity of gallium-porphyrin analogue ATX-70 in human leukemia cells. Radiat Res. 1997;148:43. [PubMed] [Google Scholar]
  319. Mobley J, Marsh JN, Hall CS, et al. Broadband measurements of phase velocity in Albunex® suspensions. J Acoust Soc Am. 1998;103:2145. doi: 10.1121/1.421360. [DOI] [PubMed] [Google Scholar]
  320. Mor-Avi V, Robinson K, Shroff S, et al. Stability of Albunex® microspheres under ultrasonic irradiation: An in vitro study. J Am Soc Echocardiogr. 1994;7:S29. [Google Scholar]
  321. Morgan TR, Laudone VP, Heston WD, et al. Free radical production by high energy shock waves—Comparison with ionizing irradiation. J Urol. 1988;139:186. doi: 10.1016/s0022-5347(17)42350-0. [DOI] [PubMed] [Google Scholar]
  322. Mulvagh SL, Foley DA, Aeschbacher BC, et al. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: Visualization of coronary arteries and measurement to coronary blood flow. J Am Coll Cardiol. 1996;27:1519. doi: 10.1016/0735-1097(95)00619-2. [DOI] [PubMed] [Google Scholar]
  323. Nada T, Moriyasu F, Fujimoto M, et al. Gray scale enhancement of liver tumors using proteinacious microspheres (FS069) J Ultrasound Med. 1995;14:S7. [Google Scholar]
  324. National Council on Radiation Protection and Measurement. Biological Effects of Ultrasound: Mechanisms and Clinical Implications. Report No. 74. Bethesda, MD: National Council on Radiation Protection and Measurement; 1983. [Google Scholar]
  325. Nilsson A-M, Odselius R, Roijer A. Pro- and antifibrinolytic effects of ultrasound on streptokinase-induced thrombolysis. Ultrasound Med Biol. 1995;21:833. doi: 10.1016/0301-5629(95)00014-i. [DOI] [PubMed] [Google Scholar]
  326. Nishioka T, Luo H, Fishbein MC, et al. Dissolution of thrombotic arterial occlusion by high intensity, low frequency ultrasound and dodecafluoropentane emulsion: An in vitro and in vivo study. J Am Coll Cardiol. 1997;30:561. doi: 10.1016/s0735-1097(97)00182-4. [DOI] [PubMed] [Google Scholar]
  327. Nomura Y, Matsuda Y, Yabuuchi I, et al. Hepatocellular carcinoma in adenomatous hyperplasia: Detection with contrast-enhanced US with carbon dioxide microbubbles. Radiology. 1993;187:353. doi: 10.1148/radiology.187.2.8386389. [DOI] [PubMed] [Google Scholar]
  328. Nyborg WL. Acoustic streaming. In: Hamilton MF, Blackstock DT, editors. Nonlinear Acoustics. San Diego, CA: Academic Press; 1997. [Google Scholar]
  329. Nyborg WL. Acoustic streaming. In: Mason WP, editor. Physical Acoustics. 1B. New York, NY: Academic Press; 1965. p. 265. [Google Scholar]
  330. Nyborg WL. Physical principles of ultrasound. In: Fry FJ, editor. Ultrasound: Its Application in Medicine and Biology. New York, NY: Elsevier; 1978. [Google Scholar]
  331. O’Brien WD, Jr, Zachary JF. Comparison of mouse and rabbit lung damage exposure to 30 kHz ultrasound. Ultrasound Med Biol. 1994a;20:299. doi: 10.1016/0301-5629(94)90070-1. [DOI] [PubMed] [Google Scholar]
  332. O’Brien WD, Jr, Zachary JF. Lung damage assessment from exposure to pulsed-wave ultrasound in the rabbit, mouse, and pig. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1997;44:473. doi: 10.1109/58.585132. [DOI] [PubMed] [Google Scholar]
  333. O’Brien WD, Jr, Zachary JF. Mouse lung damage from exposure to 30 kHz ultrasound. Ultrasound Med Biol. 1994b;20:287. doi: 10.1016/0301-5629(94)90069-8. [DOI] [PubMed] [Google Scholar]
  334. O’Brien WD, Jr, Zachary JF. Rabbit and pig lung damage from exposure to CW 30-kHz ultrasound. Ultrasound Med Biol. 1996;22:345. doi: 10.1016/0301-5629(95)02055-1. [DOI] [PubMed] [Google Scholar]
  335. Okura H, Yoshikawa J, Yoshida K, et al. Quantitation of left-to-right shunts in secundum atrial septal defect by two-dimensional contrast echocardiography with use of Albunex®. Am J Cardiol. 1995;75:639. doi: 10.1016/s0002-9149(99)80639-0. [DOI] [PubMed] [Google Scholar]
  336. Olsson SB, Johansson B, Nilsson A-M, et al. Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol. 1994;20:375. doi: 10.1016/0301-5629(94)90006-x. [DOI] [PubMed] [Google Scholar]
  337. Oosterhof GON, Cornel EB, Smits GAHJ, et al. The influence of high energy shock waves on the development of metastases. Ultrasound Med Biol. 1996;22:339. doi: 10.1016/0301-5629(95)02051-9. [DOI] [PubMed] [Google Scholar]
  338. Oosterhof GON, Smits GAHJ, de Ruyter AE, et al. In vivo effects of high energy shock waves on urological tumors: An evaluation of treatment modalities. J Urol. 1990;144:785. doi: 10.1016/s0022-5347(17)39592-7. [DOI] [PubMed] [Google Scholar]
  339. Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol. 1989;15:319. doi: 10.1016/0301-5629(89)90044-6. [DOI] [PubMed] [Google Scholar]
  340. Panigel M, Abramowicz JS, Miller RK. Techniques: Biophysical methods for assessment of placental function. In: Rama Sastry BV, editor. Placental Pharmacology. Boca Raton: Florida, CRC Press; 1996. [Google Scholar]
  341. Parsons AK, Cullinan JA, Goldstein SR, et al. Sonohysterography, sonosalpingography, and sonohysterosalpingography. A text-atlas of normal and abnormal findings. In: Fleischer AC, Manning FA, Jeanty P, et al., editors. Sonography in Obstetrics and Gynecology. Principles and Practice. Stamford, CT: Appleton and Lange; 1996. [Google Scholar]
  342. Parsons AK, Lense JJ. Sonohysterography for endometrial abnormalities: Preliminary results. J Clin Ultrasound. 1993;21:87. doi: 10.1002/jcu.1870210203. [DOI] [PubMed] [Google Scholar]
  343. Patton CA, Harris GR, Phillips RA. Output levels and bioeffect indices from diagnostic ultrasound exposure data reported to the FDA. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1994;41:353. [Google Scholar]
  344. Penney DP, Schenk EA, Maltby K, et al. Morphologic effects of pulsed ultrasound in the lung. Ultrasound Med Biol. 1993;19:127. doi: 10.1016/0301-5629(93)90005-9. [DOI] [PubMed] [Google Scholar]
  345. Peters AJ, Coulam CB. Hysterosalpingography with color Doppler ultrasonography. Am J Obstet Gynecol. 1991;164:1530. doi: 10.1016/0002-9378(91)91432-v. [DOI] [PubMed] [Google Scholar]
  346. Pilla AA, Mont MA, Nusser PR. Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma. 1990;4:246. doi: 10.1097/00005131-199004030-00002. [DOI] [PubMed] [Google Scholar]
  347. Pilmanis AA, Meissner FW, Olson RM. Left ventricular gas emboli in six cases of altitude-induced decompression sickness. Aviat Space Environ Med. 1996;67:1092. [PubMed] [Google Scholar]
  348. Pinamonti S, Caruso A, Mazzeo V, et al. DNA damage from pulsed sonications of human leucocytes in vitro. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control. 1986;33:179. doi: 10.1109/t-uffc.1986.26812. [DOI] [PubMed] [Google Scholar]
  349. Pinkerton KE, Gehr P, Crapo JD. Architecture and cellular composition of the air-blood barrier. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 121–128. [Google Scholar]
  350. Plopper CG, Pinkerton KE. Structural and cellular diversity of the mammalian respiratory system. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 1–5. [Google Scholar]
  351. Pohl EE, Rosenfeld EH, Pohl P. Effects of ultrasound on agglutination and aggregation of human erythrocytes in vitro. Ultrasound Med Biol. 1995;21:711. doi: 10.1016/0301-5629(95)00004-b. [DOI] [PubMed] [Google Scholar]
  352. Pohlhammer J, O’Brien WD., Jr Dependence of the ultrasonic scatter coefficient on collagen concentration in mammalian tissues. J Acoust Soc Am. 1981;69:283. doi: 10.1121/1.385349. [DOI] [PubMed] [Google Scholar]
  353. Porter TR, Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med. 1996a;15:577. doi: 10.7863/jum.1996.15.8.577. [DOI] [PubMed] [Google Scholar]
  354. Porter TR, Kricsfeld A, Cheatham S, et al. The effect of ultrasound frame rate on perfluorocarbon-exposed sonicated dextrose albumin microbubble size and concentration when insonifying at different flow rates, transducer frequencies, and acoustic outputs. J Am Soc Echocardiogr. 1997;10:593. doi: 10.1016/s0894-7317(97)70021-x. [DOI] [PubMed] [Google Scholar]
  355. Porter TR, LaVeen RF, Fox R, et al. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J. 1996b;132:964. doi: 10.1016/s0002-8703(96)90006-x. [DOI] [PubMed] [Google Scholar]
  356. Porter TR, Li S, Everbach EC. Direct in vivo recordings of cavitational activity within the anterior myocardium during intermittent and conventional harmonic imaging following intravenous ultrasound contrast (Abstract) J Am Coll Cardiol. 1998a;31 (Suppl A):400A. [Google Scholar]
  357. Porter TR, Li S, Hiser W, et al. Simultaneous assessment of wall motion and myocardial perfusion using a rapid acquisition intermittent harmonic imaging pulsing interval of 5–15 Hz following acute myocardial infarction and during stress echocardiography (Abstract) J Am Coll Cardiol. 1998b;31 (Suppl A):123A. [Google Scholar]
  358. Porter TR, Xie F. Visually discernible myocardial echocardiographic contrast after intravenous injection of sonicated dextrose albumin microbubbles containing high molecular weight, less soluble gases. J Am Coll Cardiol. 1995a;25:509. doi: 10.1016/0735-1097(94)00376-2. [DOI] [PubMed] [Google Scholar]
  359. Porter TP, Xie F, Kilzer K. A non-invasive method of visually assessing renal perfusion using a newly developed intravenous ultrasound contrast. J Am Coll Cardiol. 1995b;26:246A. doi: 10.1016/0735-1097(95)00132-j. [DOI] [PubMed] [Google Scholar]
  360. Porter TR, Xie F, Kricsfeld A. Myocardial ultrasound contrast with intravenous perfluoropropane-enhanced sonicated dextrose albumin: Initial clinical experience in humans. J Am Coll Cardiol (Special Issue) 1995c;26:39A. doi: 10.1016/0735-1097(95)00132-j. [DOI] [PubMed] [Google Scholar]
  361. Porter TR, Xie F, Kricsfeld A, et al. Noninvasive identification of acute myocardial ischemia and reperfusion with contrast ultrasound using intravenous perfluoropropane-exposed sonicated dextrose albumin. J Am Coll Cardiol. 1995d;26:33. doi: 10.1016/0735-1097(95)00132-j. [DOI] [PubMed] [Google Scholar]
  362. Porter TR, Xie F, Li S, et al. Increased ultrasound contrast and decreased microbubble destruction rates using triggered ultrasound imaging. J Am Soc Echocardiogr. 1996c;9:599. doi: 10.1016/s0894-7317(96)90054-1. [DOI] [PubMed] [Google Scholar]
  363. Prat F, Chapelon J-Y, el Fadil FA, et al. In vivo effects of cavitation alone or in combination with chemotherapy in a peritoneal carcinomatosis in the rat. Br J Cancer. 1991;68:13. doi: 10.1038/bjc.1993.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  364. Prat F, Ponchon T, Berger F, et al. Hepatic lesions in the rabbit induced by acoustic cavitation. Gastroenterology. 1991;100:1345. [PubMed] [Google Scholar]
  365. Prat F, Sibille A, Luccioni C, et al. Increased chemo-cytotoxicity to colon cancer cells by shock wave-induced cavitation. Gastroenterology. 1994;106:937. doi: 10.1016/0016-5085(94)90752-8. [DOI] [PubMed] [Google Scholar]
  366. Prentice D, Ahrens T. Pulmonary complications of trauma. Crit Care Nurs Q. 1994;17:24. doi: 10.1097/00002727-199408000-00004. [DOI] [PubMed] [Google Scholar]
  367. Quay SA. Ultrasound contrast agent development: Phase shift colloids. J Ultrasound Med. 1994;13:S9. [Google Scholar]
  368. Raeman CH, Child SZ, Carstensen EL. Timing of exposures in ultrasonic hemorrhage of murine lung. Ultrasound Med Biol. 1993;19:507. doi: 10.1016/0301-5629(93)90126-9. [DOI] [PubMed] [Google Scholar]
  369. Raeman CH, Child SZ, Dalecki D, et al. Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound Med Biol. 1994;20:589. doi: 10.1016/0301-5629(94)90095-7. [DOI] [PubMed] [Google Scholar]
  370. Raeman CH, Child SZ, Dalecki D, et al. Exposure-time dependence of the threshold for ultrasonically induced murine lung hemorrhage. Ultrasound Med Biol. 1996;22:139. doi: 10.1016/0301-5629(95)02036-5. [DOI] [PubMed] [Google Scholar]
  371. Raeman CH, Dalecki D, Child SZ, Meltzer RS, et al. Albunex® does not increase the sensitivity of the lung to pulsed ultrasound. Echocardiography. 1997;14:553. doi: 10.1111/j.1540-8175.1997.tb00764.x. [DOI] [PubMed] [Google Scholar]
  372. Ramnarine KV, Nassiri DK, McCarthy A, et al. Effects of pulse ultrasound on embryonic development: An in vitro study. Ultrasound Med Biol. 1998;24:575. doi: 10.1016/s0301-5629(98)00007-6. [DOI] [PubMed] [Google Scholar]
  373. Ramnarine KV, Nassiri DK, Pearce JM, et al. Estimation of in situ ultrasound exposure during obstetric examinations. Ultrasound Med Biol. 1993;19:319. doi: 10.1016/0301-5629(93)90104-v. [DOI] [PubMed] [Google Scholar]
  374. Reher P, Elbeshir el-NI, Harvey W, et al. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol. 1997;23:1251. doi: 10.1016/s0301-5629(97)00031-8. [DOI] [PubMed] [Google Scholar]
  375. Richman TS, Viscomi EN, deCherney A. Fallopian tubal patency assessed by ultrasound following fluid injection. Radiology. 1984;152:507. doi: 10.1148/radiology.152.2.6539931. [DOI] [PubMed] [Google Scholar]
  376. Riesz P, Kondo T. Free radical formation induced by ultrasound and its biological implications. J Free Radic Biol Med. 1992;13:247. doi: 10.1016/0891-5849(92)90021-8. [DOI] [PubMed] [Google Scholar]
  377. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med. 1996;335:1857. doi: 10.1056/NEJM199612193352501. [DOI] [PubMed] [Google Scholar]
  378. Rovai D, Lubrano V, Paterni M, et al. Left ventricular and myocardial opacification after intravenous injection of a novel ultrasound contrast agent: BR1. Eur Heart J. 1995;16(S):91. [Google Scholar]
  379. Roy RA, Atchley AA, Crum LA, et al. A precise technique for the measurement of acoustic cavitation thresholds, and some preliminary results. J Acoust Soc Am. 1985;78:1799. doi: 10.1121/1.392767. [DOI] [PubMed] [Google Scholar]
  380. Roy RA, Madanshetty SI, Apfel RE. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound. J Acoust Soc Am. 1990;87:2451. doi: 10.1121/1.399091. [DOI] [PubMed] [Google Scholar]
  381. Saad AH. PhD thesis. Manchester, England: University of Manchester; 1983. Some Biological Effects of Ultrasound. [Google Scholar]
  382. Saad AH, Hahn GM. Ultrasound-enhanced drug toxicity on Chinese hamster ovary cells in vitro. Cancer Res. 1989;49:5931. [PubMed] [Google Scholar]
  383. Saad AH, Hahn GM. Ultrasound-enhanced effects of Adriamycin against murine tumors. Ultrasound Med Biol. 1992;18:715. doi: 10.1016/0301-5629(92)90122-q. [DOI] [PubMed] [Google Scholar]
  384. Sabia PJ, Powers ER, Jayaweera AR, et al. Functional significance of collateral blood flow in patients with recent acute myocardial infarction: A study using myocardial contrast echocardiography. Circulation. 1992a;85:2080. doi: 10.1161/01.cir.85.6.2080. [DOI] [PubMed] [Google Scholar]
  385. Sabia PJ, Powers ER, Ragosta M, et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med. 1992b;327:1825. doi: 10.1056/NEJM199212243272601. [DOI] [PubMed] [Google Scholar]
  386. Sacks PG, Miller MW, Sutherland RM. Response of multicell spheroids to 1 MHz ultrasonic irradiation: Cavitation related damage. Radiat Res. 1983;93:545. [PubMed] [Google Scholar]
  387. Sahebjami H. Aging of the normal lung. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 351–366. [Google Scholar]
  388. Sandstrom K. Challenges associated with characterizing and predicting acoustic fields in water. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  389. Santoso T, Roelandt J, Mansyoer H, et al. Myocardial perfusion imaging in humans by contrast echocardiography using polygelin colloid solution. J Am Coll Cardiol. 1985;6:612. doi: 10.1016/s0735-1097(85)80121-2. [DOI] [PubMed] [Google Scholar]
  390. Schaer GN, Koechli OR, Schuessler B, et al. Improvement in perineal sonographic bladder neck imaging with ultrasound contrast medium. Obstet Gynecol. 1995;86:950. doi: 10.1016/0029-7844(95)00301-7. [DOI] [PubMed] [Google Scholar]
  391. Schlief R, Schurman R, Niendorf HP. Basic properties and results of clinical trials of ultrasound contrast agents based on galactose. Ann Acad Med Singapore. 1993;22:762. [PubMed] [Google Scholar]
  392. Schlief R, Staks T, Mahler M, et al. Successful opacification of the left heart chambers on echocardiographic examination after intravenous injection of a new saccharide based contrast agent. Echocardiography. 1990;7:61. doi: 10.1111/j.1540-8175.1990.tb00349.x. [DOI] [PubMed] [Google Scholar]
  393. Schneider M, Arditi M, Barrau MB, et al. BR1: A new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol. 1995;30:451. doi: 10.1097/00004424-199508000-00001. [DOI] [PubMed] [Google Scholar]
  394. Schneider M, Broillet A, Arditi M, et al. Doppler intensitometry with BR1, a sonographic contrast agent. Acad Radiol. 1996;3:S308. doi: 10.1016/s1076-6332(96)80566-6. [DOI] [PubMed] [Google Scholar]
  395. Schneider M, Bussat P, Barrau MB, et al. Polymeric microballoons as ultrasound contrast agents. Physical and ultrasonic properties compared with sonicated albumin. Invest Radiol. 1992;27:134. doi: 10.1097/00004424-199202000-00008. [DOI] [PubMed] [Google Scholar]
  396. Schrope BA, Newhouse VL. Second harmonic ultrasound blood perfusion measurement. Ultrasound Med Biol. 1993;19:567. doi: 10.1016/0301-5629(93)90080-8. [DOI] [PubMed] [Google Scholar]
  397. Schrope BA, Newhouse VL, Uhlendorf V. Simulated capillary blood flow measurement using a nonlinear ultrasonic contrast agent. Ultrason Imaging. 1992;14:134. doi: 10.1177/016173469201400204. [DOI] [PubMed] [Google Scholar]
  398. Schurmann R, Schlief R. Saccharide-based contrast agents. Characteristics and diagnostic potential. Radiol Med (Torino) 1994;87(5 Suppl 1):15. [PubMed] [Google Scholar]
  399. Schwarz KO, Becher H, Schimpfky C, et al. Doppler enhancement with SH U 508A in multiple vascular regions. Radiology. 1994;193:195. doi: 10.1148/radiology.193.1.7916468. [DOI] [PubMed] [Google Scholar]
  400. Sehgal CM, Arger PH, Pugh CR. Sonographic enhancement of the renal cortex by contrast media. J Ultrasound Med. 1995;14:741. doi: 10.7863/jum.1995.14.10.741. [DOI] [PubMed] [Google Scholar]
  401. Sehgal CM, LaVeen RF, Shalansky-Goldberg RD. Ultrasound-assisted thrombolysis. Invest Radiol. 1993;28:939. doi: 10.1097/00004424-199310000-00016. [DOI] [PubMed] [Google Scholar]
  402. Shastri KA, Logue GL, Lundgren CE, et al. Diving decompression fails to activate complement. Undersea Hyperb Med. 1997;24:51. [PubMed] [Google Scholar]
  403. Shaw PJ, Bates D, Cartilidge NEF, et al. Neurologic and neuropsychological morbidity following major surgery: Comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700. doi: 10.1161/01.str.18.4.700. [DOI] [PubMed] [Google Scholar]
  404. Shung KK, Flenniken RR. Time-domain ultrasonic contrast blood flowmetry. Ultrasound Med Biol. 1995;21:71. doi: 10.1016/0301-5629(94)00096-4. [DOI] [PubMed] [Google Scholar]
  405. Shung KK, Smith MB, Tsui BMW. Principles of Medical Imaging. San Diego, CA: Academic Press; 1992. [Google Scholar]
  406. Shung KK, Thieme GA. Ultrasonic Scattering in Biological Tissue. Boca Raton, FL: CRC Press; 1993. [Google Scholar]
  407. Shung KK, Zipparo M. Ultrasonic transducers and arrays. IEEE Eng Med Biol Mag. 1996;15:20. [Google Scholar]
  408. Siddiqi TA, O’Brien WD, Jr, Meyer RA, et al. In situ exposimetry: The ovarian ultrasound examination. Ultrasound Med Biol. 1991;17:257. doi: 10.1016/0301-5629(91)90047-z. [DOI] [PubMed] [Google Scholar]
  409. Simon RH. The biology and biochemistry of pulmonary epithelial cells. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992a. pp. 545–564. [Google Scholar]
  410. Simon RH, Ho SY, Lange SC, et al. Applications of lipid-coated microbubble contrast to tumor therapy. Ultrasound Med Biol. 1993;19:123. doi: 10.1016/0301-5629(93)90004-8. [DOI] [PubMed] [Google Scholar]
  411. Simon RH, Ho SY, Perkins CR, et al. Quantitative assessment of tumor enhancement by ultrastable lipid-coated microbubbles as a sonographic contrast agent. Invest Radiol. 1992b;27:29. doi: 10.1097/00004424-199201000-00003. [DOI] [PubMed] [Google Scholar]
  412. Singh C, Katyal SL. Secretory proteins of clara cells and type ii cells. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 93–108. [Google Scholar]
  413. Skyba DM, Price RJ, Linka AZ, et al. Microbubble destruction by ultrasound results in capillary rupture: Adverse bioeffects or a possible mechanism for in vivo drug delivery? J Am Soc Echocardiogr. 1998;11:497. [Google Scholar]
  414. Smith MD, Elion JL, McClure RR, et al. Left heart opacification with peripheral venous injection of a new saccharide echo contrast agent in dogs. J Am Coll Cardiol. 1989;13:1622. doi: 10.1016/0735-1097(89)90357-4. [DOI] [PubMed] [Google Scholar]
  415. Smith MD, Kwan OL, Reiser J, et al. Superior intensity and reproducibility of SHU-454, a new right heart contrast agent. J Am Coll Cardiol. 1984;3:992. doi: 10.1016/s0735-1097(84)80358-7. [DOI] [PubMed] [Google Scholar]
  416. Smith NB, Vorhees CV, Meyer A. An automated ultrasonic exposure system to assess the effects of in utero diagnostic ultrasound. Proceedings of the 1990 IEEE Ultrasonics Symposium; 1990. pp. 1385–1388. [Google Scholar]
  417. Smith PL, Treasure T, Newman SP, et al. Cerebral consequences of cardiopulmonary bypass. Lancet. 1986;1:823. doi: 10.1016/s0140-6736(86)90938-4. [DOI] [PubMed] [Google Scholar]
  418. Solleder P, Beller KD, Linder R. BY963: A sonographic contrast medium. Acad Radiol. 1996;3:S194. doi: 10.1016/s1076-6332(96)80532-0. [DOI] [PubMed] [Google Scholar]
  419. Sonne HS, Christensen PD, Muan B, et al. Left ventricular opacification after intravenous injection of Albunex®: The effect of different administration procedures. Int J Cardiac Imaging. 1995;11:47. doi: 10.1007/BF01148953. [DOI] [PubMed] [Google Scholar]
  420. Sotaniemi KA, Mononen H, Hokkanen TE. Long-term cerebral outcome after open-heart surgery. A five-year neuropsychological follow-up study. Stroke. 1986;17:410. doi: 10.1161/01.str.17.3.410. [DOI] [PubMed] [Google Scholar]
  421. Starritt HC, Duck FA. Quantification of acoustic shock in routine exposure measurement. Ultrasound Med Biol. 1992;18:513. doi: 10.1016/0301-5629(92)90090-w. [DOI] [PubMed] [Google Scholar]
  422. Starritt HC, Duck FA, Humphrey VF. An experimental investigation of streaming in pulsed diagnostic ultrasound beams. Ultrasound Med Biol. 1989;15:363. doi: 10.1016/0301-5629(89)90048-3. [DOI] [PubMed] [Google Scholar]
  423. Stella M, Trevison L, Montaldi A, et al. Induction of sister-chromatid exchanges in human lymphocytes exposed in vitro and in vivo to therapeutic ultrasound. Mutat Res. 1984;138:75. doi: 10.1016/0165-1218(84)90088-0. [DOI] [PubMed] [Google Scholar]
  424. Stevenson D, Walther F, Long W, et al. Controlled trial of a single dose of synthetic surfactant at birth in premature infants weighting 500 to 699 grams. J Pediatr. 1992;120:S3. doi: 10.1016/s0022-3476(05)81226-0. [DOI] [PubMed] [Google Scholar]
  425. Stonehill MA, Williams JC, Jr, Bailey MR, et al. An acoustically matched high pressure chamber for control of cavitation in shock wave lithotripsy: Mechanisms of shock wave damage in vitro. Methods Cell Science. 1998;19:303. [Google Scholar]
  426. Suhr D, Brummer F, Irmer U, et al. Disturbance of cellular calcium homeostasis by in vitro application of shock waves. Ultrasound Med Biol. 1996;22:671. doi: 10.1016/0301-5629(96)00044-0. [DOI] [PubMed] [Google Scholar]
  427. Suhr D, Brummer F, Irmer U, et al. Reduced cavitation-induced cellular damage by the antioxidative effect of vitamin E. Ultrasonics. 1994;32:301. doi: 10.1016/0041-624x(94)90010-8. [DOI] [PubMed] [Google Scholar]
  428. Suneetha N, Kumar RP. Ultrasound-induced enhancement of ACH, ACHE and GABA in fetal brain tissue of mouse. Ultrasound Med Biol. 1993;19:411. doi: 10.1016/0301-5629(93)90060-2. [DOI] [PubMed] [Google Scholar]
  429. Suren A, Osmers R, Kulenkampff D, et al. Visualization of blood flow in small ovarian tumor vessel by transvaginal color Doppler sonography after echo enhancement with injection of Levovist. Gynecol Obstet Invest. 1994;38:210. doi: 10.1159/000292481. [DOI] [PubMed] [Google Scholar]
  430. Szabo T, Grossman C, Clougherty F. Tissue loss effects on acoustic output parameters. In: Edmonds P, editor. American Institute of Ultrasound in Medicine Workshop on Effects of Nonlinear Propagation on Output Display Indices (TI and MI), Abstracts and Handouts, Boston, March 20, 1998. Laurel, MD: American Institute of Ultrasound in Medicine; 1998. Chair. [Google Scholar]
  431. Tachibana K. Enhancement of fibrinolysis with ultrasound energy. J Vasc Interv Radiol. 1992;3:299. doi: 10.1016/s1051-0443(92)72029-6. [DOI] [PubMed] [Google Scholar]
  432. Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation. 1995;92:1148. doi: 10.1161/01.cir.92.5.1148. [DOI] [PubMed] [Google Scholar]
  433. Tachibana K, Tachibana S. Prototype therapeutic ultrasound emitting catheter for accelerating thrombolysis. J Ultrasound Med. 1997;16:529. doi: 10.7863/jum.1997.16.8.529. [DOI] [PubMed] [Google Scholar]
  434. Tarantal AF, Canfield DR. Ultrasound-induced lung hemorrhage in the monkey. Ultrasound Med Biol. 1994;20:65. doi: 10.1016/0301-5629(94)90018-3. [DOI] [PubMed] [Google Scholar]
  435. Taylor GA, Ecklund K, Dunning PS. Renal cortical perfusion in rabbits: Visualization with color amplitude imaging and an experimental microbubble-based US contrast agent. Radiology. 1996;210:125. doi: 10.1148/radiology.201.1.8816532. [DOI] [PubMed] [Google Scholar]
  436. Tei C, Sakamaki T, Shah P, et al. Myocardial contrast echocardiography: A reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation. 1983;67:585. doi: 10.1161/01.cir.67.3.585. [DOI] [PubMed] [Google Scholar]
  437. Tenney SM, Remmers JE. Comparative quantitative morphology of the mammalian lung: Diffusing area. Nature. 1963;197:54. doi: 10.1038/197054a0. [DOI] [PubMed] [Google Scholar]
  438. ter Haar G, Daniels S. Evidence for ultrasonically induced cavitation in vivo. Phys Med Biol. 1981;26:1145. doi: 10.1088/0031-9155/26/6/013. [DOI] [PubMed] [Google Scholar]
  439. Thorsen E, Risberg J, Segabdal K, et al. Effects of venous gas microemboli on pulmonary gas transfer function. Undersea Hyperb Med. 1995;22:347. [PubMed] [Google Scholar]
  440. Trenchard PM. Ultrasound-induced orientation of discoid platelets and simultaneous changes in light transmission: Preliminary characterization of the phenomenon. Ultrasound Med Biol. 1987;13:183. doi: 10.1016/0301-5629(87)90120-7. [DOI] [PubMed] [Google Scholar]
  441. Tsirulnikov EM, Vartanyan IA, Gersuni GV, et al. Use of amplitude-modulated focused ultrasound for diagnosis of hearing disorders. Ultrasound Med Biol. 1988;14:277. doi: 10.1016/0301-5629(88)90093-2. [DOI] [PubMed] [Google Scholar]
  442. Tufecki EC, Girit S, Bayirli E. Evaluation of tubal patency by transvaginal sonosalpingography. Fertil Steril. 1992;57:336. doi: 10.1016/s0015-0282(16)54841-9. [DOI] [PubMed] [Google Scholar]
  443. Tyler WS, Julian MD. Gross and subgross anatomy of lungs, pleura, connective tissue septa, distal airways, and structural units. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 37–47. [Google Scholar]
  444. Uhlendorf V, Hoffmann C. Nonlinear acoustical response of coated microbubbles in diagnostic ultrasound. Cannes, France IEEE Ultrasonics Symposium Proceedings. 1994;3:1559. [Google Scholar]
  445. Uhlendorf V, Scholle F-D. Imaging of spatial distribution and flow of microbubbles using nonlinear acoustic properties. Acoustic Imaging. 1996;22:233. [Google Scholar]
  446. Umemura S, Kawabata K. IEEE Ultrasonics Symposium Proceedings. 1993. Enhancement of sonochemical reactions by second-harmonic superimposition. New York, NY, 1993; p. 917. [Google Scholar]
  447. Umemura S, Kawabata K, Sasaki K. In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition. J Acoust Soc Am. 1997;101:569. doi: 10.1121/1.418120. [DOI] [PubMed] [Google Scholar]
  448. Umemura S, Yumita N, Nishigaki R, et al. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res. 1990;81:962. doi: 10.1111/j.1349-7006.1990.tb02674.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  449. Unger E. Liposomes as myocardial imaging ultrasound contrast agents. Atlantic City, NJ, The Leading Edge in Diagnostic Ultrasound 1995; Conference, First Annual International Symposium of Contrast Agents in Diagnostic Ultrasound; sponsored by the Thomas Jefferson University and Jefferson Medical College. 1995a. [Google Scholar]
  450. Unger E. MRX-115 Aerosomes as ultrasound contrast agents for diagnostic radiology. Chicago, IL: Advances in Echocardiography Symposium; 1995b. [Google Scholar]
  451. Unger EC, Lund PJ, Shen DK, et al. Nitrogen-filled liposomes as a vascular US contrast agent: Preliminary evaluation. Radiology. 1992;185:453. doi: 10.1148/radiology.185.2.1410353. [DOI] [PubMed] [Google Scholar]
  452. Vakil N, Everbach EC. Transient acoustic cavitation in gallstone fragmentation: A study of gallstones fragmented in vivo. Ultrasound Med Biol. 1993;19:331. doi: 10.1016/0301-5629(93)90105-w. [DOI] [PubMed] [Google Scholar]
  453. Van Liew HD, Burkard ME. Behavior of bubbles of slowly permeating gas used for ultrasonic imaging contrast. Invest Radiol. 1995a;30:315. doi: 10.1097/00004424-199505000-00008. [DOI] [PubMed] [Google Scholar]
  454. Van Liew HD, Burkard ME. Bubbles in circulating blood: Stabilization and simulations of cyclic changes of size and content. J Appl Physiol. 1995b;74:1379. doi: 10.1152/jappl.1995.79.4.1379. [DOI] [PubMed] [Google Scholar]
  455. Van Roessel J, Wamsteker K, Exalto N. Sonographic investigation of the uterus during artificial uterine cavity distention. J Clin Ultrasound. 1987;15:439. doi: 10.1002/jcu.1870150703. [DOI] [PubMed] [Google Scholar]
  456. Vandenberg BF, Melton HG. Acoustic lability of albumin microspheres. J Am Soc Echocardiogr. 1994;7:582. doi: 10.1016/s0894-7317(14)80080-1. [DOI] [PubMed] [Google Scholar]
  457. Veltri A, Capello S, Faissola B, et al. Dynamic contrast-enhanced ultrasound with carbon dioxide microbubbles as adjunct to arteriography of liver tumors. Cardiovasc Intervent Radiol. 1994;17:133. doi: 10.1007/BF00195505. [DOI] [PubMed] [Google Scholar]
  458. Venezia R, Zangara C. Echohysterosalpingography: New diagnostic possibilities with SHU 450 Echovist. Acta Eur Fertil. 1991;22:279. [PubMed] [Google Scholar]
  459. Veress E, Vincze J. The haemolysing action of ultrasound on erythrocytes. Acustica. 1977;36:100. [Google Scholar]
  460. Verrall RE, Seghal CM. Sonoluminescence. In: Suslick KS, editor. Ultrasound: Its Chemical, Physical and Biological Effects. New York, NY: VCH Publishers; 1988. p. 227. [Google Scholar]
  461. Villanueva F, Glasheen WP, Sklenar J, et al. Assessment of risk area coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation. 1993;88:596. doi: 10.1161/01.cir.88.2.596. [DOI] [PubMed] [Google Scholar]
  462. Villanueva F, Glasheen WP, Sklenar J, et al. Successful and reproducible myocardial opacification during two-dimensional echocardiography from right heart injection of contrast. Circulation. 1992;85:1557. doi: 10.1161/01.cir.85.4.1557. [DOI] [PubMed] [Google Scholar]
  463. Vivino AA, Boraker DK, Miller D, et al. Stable cavitation at low ultrasonic intensities induces cell death and inhibits 3H-TdR incorporation by Con-A-stimulated murine lymphocytes in vitro. Ultrasound Med Biol. 1985;11:751. doi: 10.1016/0301-5629(85)90109-7. [DOI] [PubMed] [Google Scholar]
  464. Vladimirtseva AL, Manzhos PI. Effect of low-frequency ultrasound on the pleura and adjoining lung tissue. (Russian) Biull Eksp Biol Med. 1986;102:102. [PubMed] [Google Scholar]
  465. Voelkel NF. Lung endothelial cell biology. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 565–571. [Google Scholar]
  466. Vogel J, Hopf C, Eysel P, et al. Application of extracorporeal shock-waves in the treatment of pseudarthrosis of the lower extremity. Preliminary results Arch Orthop Trauma Surg. 1997;116:480. doi: 10.1007/BF00387581. [DOI] [PubMed] [Google Scholar]
  467. Vorhees CV, Acuff-Smith KD, Schilling MA, et al. Behavior teratologic effects of prenatal exposure to continuous-wave ultrasound in unanesthetized rats. Teratology. 1994;50:238. doi: 10.1002/tera.1420500309. [DOI] [PubMed] [Google Scholar]
  468. Vorhees CV, Acuff-Smith KD, Weisenburger WP, et al. A teratologic evaluation of continuous-wave, daily ultrasound exposure in unanesthetized rats. Teratology. 1991;44:667. doi: 10.1002/tera.1420440609. [DOI] [PubMed] [Google Scholar]
  469. Wang S-J, Lewallen DG, Bolander ME, et al. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res. 1994;12:40. doi: 10.1002/jor.1100120106. [DOI] [PubMed] [Google Scholar]
  470. Ward B, Baker AC, Humphrey VF. Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J Acoust Soc Am. 1997;101:143. doi: 10.1121/1.417977. [DOI] [PubMed] [Google Scholar]
  471. Watson JW. Elastic, resistive, and inertial properties of the lung. In: Parent RA, editor. Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press; 1992. pp. 175–216. [Google Scholar]
  472. Weaver LK, Morris A. Venous and arterial gas embolism associated with positive pressure ventilation. Chest. 1998;113:1132. doi: 10.1378/chest.113.4.1132. [DOI] [PubMed] [Google Scholar]
  473. Weber C, Moran ME, Braun EJ, et al. Injury of rat renal vessels following extracorporeal shock wave treatment. J Urol. 1992;147:476. doi: 10.1016/s0022-5347(17)37283-x. [DOI] [PubMed] [Google Scholar]
  474. Weibel ER. Dimensions of the tracheobronchial tree and alveoli. In: Altman PL, Dittmer DS, editors. Biological Handbooks: Respiration and Circulation. Bethesda, MD: Federation of American Societies for Experimental Biology; 1971. p. 105. [Google Scholar]
  475. West JB. Respiratory Physiology—The Essentials. 4. Baltimore, MD: Williams and Wilkins; 1990. p. 1. [Google Scholar]
  476. WFUMB (World Federation of Ultrasound in Medicine and Biology) WFUMB Symposium on Safety and Standardization in Medical Ultrasound: Conclusions and Recommendations Regarding Nonthermal Mechanisms for Biological Effects of Ultrasound. Ultrasound Med Biol. 1998;24(Suppl 1) [PubMed] [Google Scholar]
  477. Williams AR. Absence of meaningful thresholds for bioeffect studies on cell suspensions in vitro. Br J Cancer. 1982;45:192. [PMC free article] [PubMed] [Google Scholar]
  478. Williams AR. Ultrasound: Biological Effects and Potential Hazards. New York, NY: Academic Press; 1983. [Google Scholar]
  479. Williams AR, Delius M, Miller DL, et al. Investigation of cavitation in flowing media by lithotripter shock waves both in vitro and in vivo. Ultrasound Med Biol. 1989;15:53. doi: 10.1016/0301-5629(89)90132-4. [DOI] [PubMed] [Google Scholar]
  480. Williams AR, Kubowicz G, Cramer E, et al. The effects of the microbubble suspension SH U 454 (Echovist®) on ultrasonically induced cell lysis in a rotating tube exposure system. Echocardiography. 1991;8:423. doi: 10.1111/j.1540-8175.1991.tb01003.x. [DOI] [PubMed] [Google Scholar]
  481. Williams AR, Miller DL. The role of non-acoustic factors in the induction and proliferation of cavitational activity in vitro. Phys Med Biol. 1989;34:1561. doi: 10.1088/0031-9155/34/11/005. [DOI] [PubMed] [Google Scholar]
  482. Wilson WL, Wiercinski FL, Nyborg WL, et al. Deformation and motion produced in isolated living cells by localized ultrasonic vibration. J Acoust Soc Am. 1966;40:1363. doi: 10.1121/1.1910235. [DOI] [PubMed] [Google Scholar]
  483. Winkelmann JW, Kenner MD, Dave R, et al. Contrast echocardiography. Ultrasound Med Biol. 1994;20:507. doi: 10.1016/0301-5629(94)90086-8. [DOI] [PubMed] [Google Scholar]
  484. Wray RA, Zoghbi WA, Quinones MA, et al. Contrast echocardiography: Relation of acoustic power and time gain compensation to contrast intensity duration. J Am Soc Echocardiog. 1992;4:286. [Google Scholar]
  485. Wu J, Tong J. Experimental study of stability of contrast agents in an ultrasound field. Ultrasound Med Biol. 1998a;24:257. doi: 10.1016/s0301-5629(97)00245-7. [DOI] [PubMed] [Google Scholar]
  486. Wu J, Tong J. Measurements of nonlinearity parameter B/A of contrast agents. Ultrasound Med Biol. 1998b;24:153. doi: 10.1016/s0301-5629(97)00207-x. [DOI] [PubMed] [Google Scholar]
  487. Wu J, Zhu Z, Du G. Nonlinear behavior of a liquid containing uniform bubbles: Comparison between theory and experiments. Ultrasound Med Biol. 1995;21:545. doi: 10.1016/0301-5629(94)00134-y. [DOI] [PubMed] [Google Scholar]
  488. Xavier CAM, Duarte LR. Treatment of nonunions by ultrasound stimulation: First clinical applications; San Francisco, CA. Annual Meeting of the American Academy of Orthopaedic Surgeons; January 25, 1987. [Google Scholar]
  489. Yang KH, Parvizi J, Wang SJ, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthopaed Res. 1996;14:802. doi: 10.1002/jor.1100140518. [DOI] [PubMed] [Google Scholar]
  490. Yarali H, Gurgan T, Erden A, et al. Color Doppler hysterosalpingo-sonography: A single and potentially useful method to evaluate fallopian tubal patency. Hum Reprod. 1994;9:64. doi: 10.1093/oxfordjournals.humrep.a138321. [DOI] [PubMed] [Google Scholar]
  491. Yount DE. On the evolution, generation, and regeneration of gas cavitation nuclei. J Acoust Soc Am. 1982;71:1473. [Google Scholar]
  492. Yumita N, Nishigaki R, Umemura K, et al. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res. 1989;80:219. doi: 10.1111/j.1349-7006.1989.tb02295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  493. Yumita N, Nishigaki R, Umemura K, et al. Synergistic effect of ultrasound and hematoporphyrin on Sarcoma 180. Jpn J Cancer Res. 1990;81:304. doi: 10.1111/j.1349-7006.1990.tb02565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  494. Yumita N, Sasaki K, Umemura S, et al. Sonodynamically induced antitumor effect of gallium-porphyrin complex by focused ultrasound on experimental kidney tumor. Cancer Lett. 1997;112:79. doi: 10.1016/s0304-3835(96)04548-x. [DOI] [PubMed] [Google Scholar]
  495. Zachary JF, O’Brien WD., Jr Lung lesion induced by continuous- and pulsed-wave (diagnostic) ultrasound in mice, rabbits, and pigs. Vet Pathol. 1995;32:43. doi: 10.1177/030098589503200106. [DOI] [PubMed] [Google Scholar]
  496. Zagzebski JA. Essentials of Ultrasound Physics. St Louis, MO: CV Mosby; 1996. [Google Scholar]
  497. Zhong P. Effects of tissue constraining on shock wave-induced bubble oscillation in vivo. J Acoust Soc Am. 1998;103:3038. doi: 10.1121/1.423905. [DOI] [PubMed] [Google Scholar]

RESOURCES