Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 2000 Dec;6(12):1008–1015.

Potent induction of apoptosis by beta-lapachone in human multiple myeloma cell lines and patient cells.

Y Li 1, C J Li 1, D Yu 1, A B Pardee 1
PMCID: PMC1949930  PMID: 11474117

Abstract

BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked by either interleukin-6 or Bcl-2, which confer multidrug resistance in MM. CONCLUSIONS: Our results suggest potential therapeutic application of beta-lapachone against MM, particularly to overcome drug resistance in relapsed patients.

Full Text

The Full Text of this article is available as a PDF (105.6 KB).


Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES