Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 2001 Feb;7(2):125–134.

Alpha1 Na,K-ATPase and Na,K,2Cl-cotransporte/D3mit3 loci interact to increase susceptibility to salt-sensitive hypertension in Dahl S(HSD) rats.

V L Herrera 1, L V Lopez 1, N Ruiz-Opazo 1
PMCID: PMC1950017  PMID: 11471547

Abstract

BACKGROUND: Essential (multigenic) hypertension is a complex multifactorial disease whose genetic etiology has not been unraveled on a major locus-effect investigative paradigm. As with other complex genetic diseases, applying an interacting loci paradigm could be critical in the elucidation of genetic determinants. Having defined the alpha1 Na,K-ATPase (alpha1NK) as a hypertension susceptibility gene in Dahl salt-sensitive (Dahl S) rats, we determined whether alphaINK interacts with another renal epithelial Na transporter to increase susceptibility to salt-sensitive hypertension. We focused on alpha1NK and Na,K,2Cl-cotransporter (NKC) as an a priori candidate interacting gene pair because they comprise a functionally linked Na transport system in renal thick ascending limb of Henle (TALH) epithelial cells and exhibit altered function in prehypertensive Dahl S rats in contrast to Dahl salt-resistant normotensive (Dahl R) rats. MATERIAL AND METHOD: Cosegregation analysis of alphaNK and NKC loci was done in a (Dahl S x Dahl R) F2 cohort characterized for blood pressure by radiotelemetry using the D2mghII microsatellite marker in the alpha1NK gene and the D3mit3 microsatellite marker close to the NKC gene (NKC/D3mit3 locus). Single locus and digenic analyses were performed to establish the individual and interactive genetic contribution to salt-sensitive hypertension. Molecular analysis was then done to support the NKC gene as the likely candidate gene interacting with alpha1NK in Dahl salt-sensitive hypertension pathogenesis. RESULTS: Compared with respective single locus analysis, digenic analysis of 96 F2 (Dahl S x Dahl R) hybrid male rats revealed cosegregation of alpha1NK and NKC/D3mit3 loci as interacting pair with salt-sensitive hypertension with markedly increased significance for systolic (one-way ANOVA p = 10(-6)), diastolic (p = 10(-5)), and mean arterial (p = 10(-6)) blood pressures. Concordantly, two-way ANOVA detected interaction between alpha1NK and NKC loci in determining the levels of systolic (p = 0.004), diastolic (p = 0.008), and mean arterial (p = 0.006) pressures. To unravel potential NKC molecular dysfunction(s) involved in hypertension pathogenesis, we investigated putative differences between Dahl S and Dahl R rats in nucleotide sequence and isoform gene expression of the renal-specific Na,K,2Cl-cotransporter. Molecular analysis revealed an inversion of alternatively spliced NKC-isoform ratios (4B:4A:4F) between Dahl S and Dahl R prehypertensive kidneys supported by four mutations in intron-3 immediately upstream to alternatively spliced exons 4B, 4A, and 4F. No nucleotide changes were detected within the aminoacid encoding exons of NKC. CONCLUSIONS: Altogether, these current data and previous characterization of the role of the Q276L alpha1NK molecular variant in Dahl S hypertension provide cumulative compelling evidence that alpha1NK and NKC/D3mit3 loci interact to increase susceptibility to hypertension in Dahl S rats and that NKC is the likely candidate gene that interacts with alpha 1NK. More importantly, the data substantiate gene interaction as an operative mechanism in multigenic hypertension.

Full Text

The Full Text of this article is available as a PDF (207.6 KB).


Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES