Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 2001 Feb;7(2):83–92.

Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor.

M Bodo 1, T Baroni 1, S Bellocchio 1, M Calvitti 1, C Lilli 1, A D'Alessandro 1, G Muzi 1, A Lumare 1, G Abbritti 1
PMCID: PMC1950019  PMID: 11471549

Abstract

BACKGROUND: Previous studies show that macrophages, lung fibroblasts, and their soluble mediators are responsible for the onset and development of pulmonary fibrosis. This study was conducted to determine whether airway epithelial cells are also directly involved in response to fibrogenic agents and consequently in the pathogenesis of lung fibrosis. To verify the hypothesis, we determined whether silica acts directly on human bronchial epithelial cells by stimulating cytokine and growth factor release and by modifying matrix production. MATERIALS AND METHODS: An SV40 large T antigen-transformed human airway epithelial cell line, 16HBE14o (16HBE), was used. The expression profile of some proinflammatory interleukins (ILs), such as IL-1alpha, IL-1beta and IL-6 and their modulation by silica, were evaluated by polymerase chain reaction (PCR) analysis. Transforming growth factor beta (TGFbeta) and basic fibroblast growth factor (bFGF) mRNA levels were tested by Northern blotting in the presence and in the absence of silica. The silica- and/or bFGF-induced effects on matrix components (total proteins, collagen, and fibronectin) were also evaluated using radio-labeled precursors. RESULTS: The results demonstrated 16HBE internalized silica particles. Silica induced a little IL-6 secretion, without affecting IL-1 and TGFbeta isoform production and strongly stimulated bFGF mRNA level and bFGF protein secretion. Silica also induced changes in 16HBE production of total proteins, collagen, and fibronectin production. When added in combination with the growth factor, it strengthened bFGF stimulation of matrix component secretion. CONCLUSIONS: These results support the hypothesis that the changes in matrix components are due to a direct effect of silica on bronchial epithelial cells. Silica-induced over-secretion of bFGF suggests that autocrine and paracrine differentiation loops for bFGF may also be operative and that these mechanisms may be involved in the pathogenesis of pulmonary fibrosis. In the future, cytokine-directed therapeutic strategies might find a place in clinical practice.

Full Text

The Full Text of this article is available as a PDF (306.1 KB).


Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES