Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Jan;58(1):93–98. doi: 10.1128/aem.58.1.93-98.1992

Molecular cloning of the isocitrate dehydrogenase gene of an extreme thermophile, Thermus thermophilus HB8.

K Miyazaki 1, H Eguchi 1, A Yamagishi 1, T Wakagi 1, T Oshima 1
PMCID: PMC195177  PMID: 1539996

Abstract

The gene coding for isocitrate dehydrogenase of an extreme thermophile, Thermus thermophilus HB8, was cloned and sequenced. This gene consists of a single open reading frame of 1,485 bp preceded by a Shine-Dalgarno ribosome binding site. Promoter- and terminatorlike sequences were detected upstream and downstream of the open reading frame, respectively. The G + C content of the coding region was 65.6%, and that of the third nucleotide of the codons was 90.3%. On the basis of the deduced amino acid sequence, the Mr of the monomeric enzyme was calculated as 54,189, an Mr which is similar to that of the purified protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A comparison of the amino acid sequence of the T. thermophilus enzyme with that of the Escherichia coli enzyme showed (i) a 37% overall similarity; (ii) the conservation of the Ser residue, which is known to be phosphorylated in the E. coli enzyme, and of the surrounding sequence; and (iii) the presence of 141 extra residues at the C terminus of the T. thermophilus enzyme. T. thermophilus isocitrate dehydrogenase showed a high sequence homology (33% of the amino acid sequence is identical) to isopropylmalate dehydrogenase from the same organism and was suggested to have evolved from a common ancestral enzyme.

Full text

PDF
93

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreadis A., Hsu Y. P., Hermodson M., Kohlhaw G., Schimmel P. Yeast LEU2. Repression of mRNA levels by leucine and primary structure of the gene product. J Biol Chem. 1984 Jul 10;259(13):8059–8062. [PubMed] [Google Scholar]
  2. Borthwick A. C., Holms W. H., Nimmo H. G. Amino acid sequence round the site of phosphorylation in isocitrate dehydrogenase from Escherichia coli ML308. FEBS Lett. 1984 Aug 20;174(1):112–115. doi: 10.1016/0014-5793(84)81087-x. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  4. Davidow L. S., Kaczmarek F. S., DeZeeuw J. R., Conlon S. W., Lauth M. R., Pereira D. A., Franke A. E. The Yarrowia lipolytica LEU2 gene. Curr Genet. 1987;11(5):377–383. doi: 10.1007/BF00378180. [DOI] [PubMed] [Google Scholar]
  5. Eguchi H., Wakagi T., Oshima T. A highly stable NADP-dependent isocitrate dehydrogenase from Thermus thermophilus HB8: purification and general properties. Biochim Biophys Acta. 1989 Feb 24;990(2):133–137. doi: 10.1016/s0304-4165(89)80024-8. [DOI] [PubMed] [Google Scholar]
  6. Garnak M., Reeves H. C. Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. Science. 1979 Mar 16;203(4385):1111–1112. doi: 10.1126/science.34215. [DOI] [PubMed] [Google Scholar]
  7. Hamasawa K., Kobayashi Y., Harada S., Yoda K., Yamasaki M., Tamura G. Molecular cloning and nucleotide sequence of the 3-isopropylmalate dehydrogenase gene of Candida utilis. J Gen Microbiol. 1987 Apr;133(4):1089–1097. doi: 10.1099/00221287-133-4-1089. [DOI] [PubMed] [Google Scholar]
  8. Hartmann R. K., Erdmann V. A. Thermus thermophilus 16S rRNA is transcribed from an isolated transcription unit. J Bacteriol. 1989 Jun;171(6):2933–2941. doi: 10.1128/jb.171.6.2933-2941.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hurley J. H., Dean A. M., Sohl J. L., Koshland D. E., Jr, Stroud R. M. Regulation of an enzyme by phosphorylation at the active site. Science. 1990 Aug 31;249(4972):1012–1016. doi: 10.1126/science.2204109. [DOI] [PubMed] [Google Scholar]
  11. Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Imai R., Sekiguchi T., Nosoh Y., Tsuda K. The nucleotide sequence of 3-isopropylmalate dehydrogenase gene from Bacillus subtilis. Nucleic Acids Res. 1987 Jun 25;15(12):4988–4988. doi: 10.1093/nar/15.12.4988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
  14. Katsube Y., Tanaka N., Takenaka A., Yamada T., Oshima T. Crystallization and preliminary X-ray data for 3-isopropylmalate dehydrogenase of Thermus thermophilus. J Biochem. 1988 Nov;104(5):679–680. doi: 10.1093/oxfordjournals.jbchem.a122531. [DOI] [PubMed] [Google Scholar]
  15. Koyama Y., Furukawa K. Cloning and sequence analysis of tryptophan synthetase genes of an extreme thermophile, Thermus thermophilus HB27: plasmid transfer from replica-plated Escherichia coli recombinant colonies to competent T. thermophilus cells. J Bacteriol. 1990 Jun;172(6):3490–3495. doi: 10.1128/jb.172.6.3490-3495.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  17. Nagahari K., Koshikawa T., Sakaguchi K. Cloning and expression of the leucine gene from Thermus thermophilus in Escherichia coli. Gene. 1980 Jul;10(2):137–145. doi: 10.1016/0378-1119(80)90131-6. [DOI] [PubMed] [Google Scholar]
  18. Nishiyama M., Horinouchi S., Beppu T. Characterization of an operon encoding succinyl-CoA synthetase and malate dehydrogenase from Thermus flavus AT-62 and its expression in Escherichia coli. Mol Gen Genet. 1991 Apr;226(1-2):1–9. doi: 10.1007/BF00273580. [DOI] [PubMed] [Google Scholar]
  19. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  20. Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
  21. Sekiguchi T., Suda M., Ishii T., Nosoh Y., Tsuda K. The nucleotide sequence of 3-isopropylmalate dehydrogenase gene from Bacillus caldotenax. Nucleic Acids Res. 1987 Jan 26;15(2):853–853. doi: 10.1093/nar/15.2.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka T., Kawano N., Oshima T. Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem. 1981 Feb;89(2):677–682. doi: 10.1093/oxfordjournals.jbchem.a133245. [DOI] [PubMed] [Google Scholar]
  23. Thorsness P. E., Koshland D. E., Jr Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422–10425. [PubMed] [Google Scholar]
  24. Yamada T., Akutsu N., Miyazaki K., Kakinuma K., Yoshida M., Oshima T. Purification, catalytic properties, and thermal stability of threo-Ds-3-isopropylmalate dehydrogenase coded by leuB gene from an extreme thermophile, Thermus thermophilus strain HB8. J Biochem. 1990 Sep;108(3):449–456. doi: 10.1093/oxfordjournals.jbchem.a123220. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES