Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Jan;58(1):421–425. doi: 10.1128/aem.58.1.421-425.1992

Development of plasmid cloning vectors for Thermus thermophilus HB8: expression of a heterologous, plasmid-borne kanamycin nucleotidyltransferase gene.

M W Mather 1, J A Fee 1
PMCID: PMC195228  PMID: 1311546

Abstract

While several Thermus genes have been cloned and T. thermophilus has been shown to be transformable, molecular genetic studies of these thermophiles have been hampered by the absence of selectable cloning vectors. We have constructed a selectable plasmid by random insertion of a heterologous gene encoding a thermostable kanamycin nucleotidyltransferase activity into a cryptic, multicopy plasmid from T. thermophilus HB8. This plasmid should serve as a suitable starting point for the development of a gene expression system for T. thermophilus.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowen D., Littlechild J. A., Fothergill J. E., Watson H. C., Hall L. Nucleotide sequence of the phosphoglycerate kinase gene from the extreme thermophile Thermus thermophilus. Comparison of the deduced amino acid sequence with that of the mesophilic yeast phosphoglycerate kinase. Biochem J. 1988 Sep 1;254(2):509–517. doi: 10.1042/bj2540509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fee J. A., Kuila D., Mather M. W., Yoshida T. Respiratory proteins from extremely thermophilic, aerobic bacteria. Biochim Biophys Acta. 1986;853(2):153–185. doi: 10.1016/0304-4173(86)90009-1. [DOI] [PubMed] [Google Scholar]
  4. Hishinuma F., Tanaka T., Sakaguchi K. Isolation of extrachromosomal deoxyribonucleic acids from extremely thermophilic bacteria. J Gen Microbiol. 1978 Feb;104(2):193–199. doi: 10.1099/00221287-104-2-193. [DOI] [PubMed] [Google Scholar]
  5. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
  6. Koyama Y., Arikawa Y., Furukawa K. A plasmid vector for an extreme thermophile, Thermus thermophilus. FEMS Microbiol Lett. 1990 Oct;60(1-2):97–101. doi: 10.1016/0378-1097(90)90352-q. [DOI] [PubMed] [Google Scholar]
  7. Koyama Y., Furukawa K. Cloning and sequence analysis of tryptophan synthetase genes of an extreme thermophile, Thermus thermophilus HB27: plasmid transfer from replica-plated Escherichia coli recombinant colonies to competent T. thermophilus cells. J Bacteriol. 1990 Jun;172(6):3490–3495. doi: 10.1128/jb.172.6.3490-3495.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koyama Y., Hoshino T., Tomizuka N., Furukawa K. Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol. 1986 Apr;166(1):338–340. doi: 10.1128/jb.166.1.338-340.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koyama Y., Okamoto S., Furukawa K. Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, Thermus strain T2, and their expression in Thermus thermophilus HB27. Appl Environ Microbiol. 1990 Jul;56(7):2251–2254. doi: 10.1128/aem.56.7.2251-2254.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mather M. W. Base composition-independent hybridization in dried agarose gels: screening and recovery for cloning of genomic DNA fragments. Biotechniques. 1988 May;6(5):444–447. [PubMed] [Google Scholar]
  11. Mather M. W., Fee J. A. Plasmid-associated aggregation in Thermus thermophilus HB8. Plasmid. 1990 Jul;24(1):45–56. doi: 10.1016/0147-619x(90)90024-7. [DOI] [PubMed] [Google Scholar]
  12. Mather M. W., Springer P., Fee J. A. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa3. J Biol Chem. 1991 Mar 15;266(8):5025–5035. [PubMed] [Google Scholar]
  13. Matsumura M., Aiba S. Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus. J Biol Chem. 1985 Dec 5;260(28):15298–15303. [PubMed] [Google Scholar]
  14. Matsumura M., Katakura Y., Imanaka T., Aiba S. Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110. J Bacteriol. 1984 Oct;160(1):413–420. doi: 10.1128/jb.160.1.413-420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsumura M., Yasumura S., Aiba S. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. 1986 Sep 25-Oct 1Nature. 323(6086):356–358. doi: 10.1038/323356a0. [DOI] [PubMed] [Google Scholar]
  16. Melgar E., Goldthwait D. A. Deoxyribonucleic acid nucleases. II. The effects of metals on the mechanism of action of deoxyribonuclease I. J Biol Chem. 1968 Sep 10;243(17):4409–4416. [PubMed] [Google Scholar]
  17. Munster M. J., Munster A. P., Sharp R. J. Incidence of Plasmids in Thermus spp. Isolated in Yellowstone National Park. Appl Environ Microbiol. 1985 Nov;50(5):1325–1327. doi: 10.1128/aem.50.5.1325-1327.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Munster M. J., Munster A. P., Woodrow J. R., Sharp R. J. Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. J Gen Microbiol. 1986 Jun;132(6):1677–1683. doi: 10.1099/00221287-132-6-1677. [DOI] [PubMed] [Google Scholar]
  19. Nureki O., Muramatsu T., Suzuki K., Kohda D., Matsuzawa H., Ohta T., Miyazawa T., Yokoyama S. Methionyl-tRNA synthetase gene from an extreme thermophile, Thermus thermophilus HB8. Molecular cloning, primary-structure analysis, expression in Escherichia coli, and site-directed mutagenesis. J Biol Chem. 1991 Feb 15;266(5):3268–3277. [PubMed] [Google Scholar]
  20. Sato S., Nakada Y., Kanaya S., Tanaka T. Molecular cloning and nucleotide sequence of Thermus thermophilus HB8 trpE and trpG. Biochim Biophys Acta. 1988 Sep 7;950(3):303–312. doi: 10.1016/0167-4781(88)90126-1. [DOI] [PubMed] [Google Scholar]
  21. Seidler L., Peter M., Meissner F., Sprinzl M. Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8. Nucleic Acids Res. 1987 Nov 25;15(22):9263–9277. doi: 10.1093/nar/15.22.9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sen S., Oriel P. Transfer of transposon Tn916 from Bacillus subtilis to Thermus aquaticus. FEMS Microbiol Lett. 1990 Jan 15;55(1-2):131–134. doi: 10.1016/0378-1097(90)90181-o. [DOI] [PubMed] [Google Scholar]
  23. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES