Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Feb;58(2):532–535. doi: 10.1128/aem.58.2.532-535.1992

DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1940) Waksman and Henrici 1948.

D P Labeda 1, A J Lyons 1
PMCID: PMC195280  PMID: 1610178

Abstract

DNA relatedness among 28 putative strains of Streptomyces ipomoea from geographically diverse locations and the type strain, NRRL B-12321, was determined spectrophotometrically. The data confirm that these 28 strains are not closely related genetically to the plant-pathogenic species Streptomyces scabies (39% DNA relatedness) or Streptomyces acidiscabies (17% DNA relatedness) or any other major blue-spored Streptomyces species (less than 30% DNA relatedness). Of the 29 strains examined, 4 could be clearly distinguished from S. ipomoea on the basis of morphological criteria, i.e., they had gray rather than blue spores and produced melanin pigment, and their low DNA relatedness to authentic S. ipomoea strains confirmed their original misidentification. The remaining 25 S. ipomoea strains exhibited high DNA relatedness among themselves (76 to 100% homology), even though they had been isolated in different locations throughout the United States and Japan. The avirulent type strain, NRRL B-12321, exhibited slightly lower DNA relatedness with the virulent strains of S. ipomoea (85% average DNA relatedness) than was observed among the virulent strains (average of 96% DNA relatedness).

Full text

PDF
532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark C. A., Lawrence A. Morphology of spore-bearing structures in Streptomyces ipomoea. Can J Microbiol. 1981 Jun;27(6):575–579. doi: 10.1139/m81-087. [DOI] [PubMed] [Google Scholar]
  2. Seidler R. J., Knittel M. D., Brown C. Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol. 1975 Jun;29(6):819–825. doi: 10.1128/am.29.6.819-825.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Seidler R. J., Mandel M. Quantitative aspects of deoxyribonucleic acid renaturation: base composition, state of chromosome replication, and polynucleotide homologies. J Bacteriol. 1971 May;106(2):608–614. doi: 10.1128/jb.106.2.608-614.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J. Numerical classification of Streptomyces and related genera. J Gen Microbiol. 1983 Jun;129(6):1743–1813. doi: 10.1099/00221287-129-6-1743. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES