Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Mar;58(3):1057–1060. doi: 10.1128/aem.58.3.1057-1060.1992

Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12.

N Assaf-Anid 1, L Nies 1, T M Vogel 1
PMCID: PMC195381  PMID: 1575479

Abstract

The polychlorinated biphenyl congener 2,3,4,5,6-pentachlorobiphenyl and hexachlorobenzene were reductively dechlorinated in an aqueous biomimetic model system containing vitamin B12. The products of 2,3,4,5,6-pentachlorobiphenyl dechlorination were 2,3,5,6- and 2,3,4,6-tetrachlorobiphenyl. Hexachlorobenzene dechlorinated to pentachlorobenzene and a mixture of 1,2,4,5- and 1,2,3,5-tetrachlorobenzene. The proton from water was shown to be the source of the hydrogen atom used for the replacement of chlorine on the biphenyl ring.

Full text

PDF
1057

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. F., Jr, Bedard D. L., Brennan M. J., Carnahan J. C., Feng H., Wagner R. E. Polychlorinated biphenyl dechlorination in aquatic sediments. Science. 1987 May 8;236(4802):709–712. doi: 10.1126/science.236.4802.709. [DOI] [PubMed] [Google Scholar]
  2. Deweerd K. A., Suflita J. M. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of "Desulfomonile tiedjei". Appl Environ Microbiol. 1990 Oct;56(10):2999–3005. doi: 10.1128/aem.56.10.2999-3005.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fathepure B. Z., Boyd S. A. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol. 1988 Dec;54(12):2976–2980. doi: 10.1128/aem.54.12.2976-2980.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fathepure B. Z., Tiedje J. M., Boyd S. A. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl Environ Microbiol. 1988 Feb;54(2):327–330. doi: 10.1128/aem.54.2.327-330.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Marks T. S., Allpress J. D., Maule A. Dehalogenation of lindane by a variety of porphyrins and corrins. Appl Environ Microbiol. 1989 May;55(5):1258–1261. doi: 10.1128/aem.55.5.1258-1261.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nies L., Vogel T. M. Effects of organic substrates on dechlorination of aroclor 1242 in anaerobic sediments. Appl Environ Microbiol. 1990 Sep;56(9):2612–2617. doi: 10.1128/aem.56.9.2612-2617.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nies L., Vogel T. M. Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Appl Environ Microbiol. 1991 Sep;57(9):2771–2774. doi: 10.1128/aem.57.9.2771-2774.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Quensen J. F., 3rd, Tiedje J. M., Boyd S. A. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science. 1988 Nov 4;242(4879):752–754. doi: 10.1126/science.242.4879.752. [DOI] [PubMed] [Google Scholar]
  9. Zoro J. A., Hunter J. M., Eglinton G., Ware G. C. Degradation of p,p'-DDT in reducing environments. Nature. 1974 Jan 25;247(5438):235–237. doi: 10.1038/247235a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES