Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Apr;58(4):1220–1226. doi: 10.1128/aem.58.4.1220-1226.1992

Aerobic vinyl chloride metabolism in Mycobacterium aurum L1.

S Hartmans 1, J A De Bont 1
PMCID: PMC195578  PMID: 1599242

Abstract

Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.

Full text

PDF
1220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbin A., Brésil H., Croisy A., Jacquignon P., Malaveille C., Montesano R., Bartsch H. Liver-microsome-mediated formation of alkylating agents from vinyl bromide and vinyl chloride. Biochem Biophys Res Commun. 1975 Nov 17;67(2):596–603. doi: 10.1016/0006-291x(75)90854-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Creech J. L., Jr, Johnson M. N. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J Occup Med. 1974 Mar;16(3):150–151. [PubMed] [Google Scholar]
  4. Davis J. W., Carpenter C. L. Aerobic biodegradation of vinyl chloride in groundwater samples. Appl Environ Microbiol. 1990 Dec;56(12):3878–3880. doi: 10.1128/aem.56.12.3878-3880.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiStefano T. D., Gossett J. M., Zinder S. H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol. 1991 Aug;57(8):2287–2292. doi: 10.1128/aem.57.8.2287-2292.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duverger M., Lambotte M., Malvoisin E., de Meester C., Poncelet F., Mercier M. Metabolic activation and mutagenicity of 4 vinylic monomers (vinyl chloride, styrene, acrylonitrile, butadiene). Toxicol Eur Res. 1981 May;3(3):131–140. [PubMed] [Google Scholar]
  7. Ewers J., Freier-Schröder D., Knackmuss H. J. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch Microbiol. 1990;154(4):410–413. doi: 10.1007/BF00276540. [DOI] [PubMed] [Google Scholar]
  8. Fogel M. M., Taddeo A. R., Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol. 1986 Apr;51(4):720–724. doi: 10.1128/aem.51.4.720-724.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  10. Freedman D. L., Gossett J. M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol. 1989 Sep;55(9):2144–2151. doi: 10.1128/aem.55.9.2144-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guicherit R., Schulting F. L. The occurrence of organic chemicals in the atmosphere of The Netherlands. Sci Total Environ. 1985 Jun;43(3):193–219. doi: 10.1016/0048-9697(85)90129-9. [DOI] [PubMed] [Google Scholar]
  12. Hartmans S., Jansen M. W., van der Werf M. J., de Bont J. A. Bacterial metabolism of 3-chloroacrylic acid. J Gen Microbiol. 1991 Aug;137(8):2025–2032. doi: 10.1099/00221287-137-8-2025. [DOI] [PubMed] [Google Scholar]
  13. Hartmans S., Smits J. P., van der Werf M. J., Volkering F., de Bont J. A. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Appl Environ Microbiol. 1989 Nov;55(11):2850–2855. doi: 10.1128/aem.55.11.2850-2855.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartmans S., Weber F. J., Somhorst D. P., de Bont J. A. Alkene monooxygenase from Mycobacterium: a multicomponent enzyme. J Gen Microbiol. 1991 Nov;137(11):2555–2560. doi: 10.1099/00221287-137-11-2555. [DOI] [PubMed] [Google Scholar]
  15. Hartmans S., de Bont J. A., Harder W. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Rev. 1989 Sep;5(3):235–264. doi: 10.1016/0168-6445(89)90034-x. [DOI] [PubMed] [Google Scholar]
  16. Kästner M. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions. Appl Environ Microbiol. 1991 Jul;57(7):2039–2046. doi: 10.1128/aem.57.7.2039-2046.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Phelps T. J., Malachowsky K., Schram R. M., White D. C. Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales. Appl Environ Microbiol. 1991 Apr;57(4):1252–1254. doi: 10.1128/aem.57.4.1252-1254.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Simon P., Bolt H. M., Filser J. G. Covalent interaction of reactive metabolites with cytosolic coenzyme A as mechanism of haloethylene-induced acetonemia. Biochem Pharmacol. 1985 Jun 1;34(11):1981–1986. doi: 10.1016/0006-2952(85)90319-3. [DOI] [PubMed] [Google Scholar]
  19. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  20. Tsien H. C., Brusseau G. A., Hanson R. S., Waclett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1989 Dec;55(12):3155–3161. doi: 10.1128/aem.55.12.3155-3161.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vannelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 1990 Apr;56(4):1169–1171. doi: 10.1128/aem.56.4.1169-1171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol. 1985 May;49(5):1080–1083. doi: 10.1128/aem.49.5.1080-1083.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wackett L. P., Brusseau G. A., Householder S. R., Hanson R. S. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2960–2964. doi: 10.1128/aem.55.11.2960-2964.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES