Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Apr;58(4):1335–1343. doi: 10.1128/aem.58.4.1335-1343.1992

Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

Thomas P Curtis 1,†,*, D Duncan Mara 1, Salomao A Silva 1
PMCID: PMC195595  PMID: 16348698

Abstract

Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light.

Full text

PDF
1335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barcina I., González J. M., Iriberri J., Egea L. Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water. Appl Environ Microbiol. 1989 Jan;55(1):246–251. doi: 10.1128/aem.55.1.246-251.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barcina I., González J. M., Iriberri J., Egea L. Survival strategy of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J Appl Bacteriol. 1990 Feb;68(2):189–198. doi: 10.1111/j.1365-2672.1990.tb02565.x. [DOI] [PubMed] [Google Scholar]
  3. Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 1985 Dec;49(4):359–378. doi: 10.1128/mr.49.4.359-378.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clifford D. P., Repine J. E. Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem. 1982 Dec 10;49(3):143–149. doi: 10.1007/BF00231175. [DOI] [PubMed] [Google Scholar]
  5. Davies C. M., Evison L. M. Sunlight and the survival of enteric bacteria in natural waters. J Appl Bacteriol. 1991 Mar;70(3):265–274. doi: 10.1111/j.1365-2672.1991.tb02935.x. [DOI] [PubMed] [Google Scholar]
  6. Gong H. H., Kagan J., Seitz R., Stokes A. B., Meyer F. A., Tuveson R. W. The phototoxicity of phenylheptatriyne: oxygen-dependent hemolysis of human erythrocytes and inactivation of Escherichia coli. Photochem Photobiol. 1988 Jan;47(1):55–63. doi: 10.1111/j.1751-1097.1988.tb02695.x. [DOI] [PubMed] [Google Scholar]
  7. Gregory L. P. Polonium-210 in leaf tobacco from four countries. Science. 1965 Oct 1;150(3692):74–76. doi: 10.1126/science.150.3692.74-a. [DOI] [PubMed] [Google Scholar]
  8. Hedges R. W., Datta N. Plasmids determining I pili constitute a compatibility complex. J Gen Microbiol. 1973 Jul;77(1):19–25. doi: 10.1099/00221287-77-1-19. [DOI] [PubMed] [Google Scholar]
  9. Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. doi: 10.1128/jb.170.9.3910-3914.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kapuscinski R. B., Mitchell R. Solar radiation induces sublethal injury in Escherichia coli in seawater. Appl Environ Microbiol. 1981 Mar;41(3):670–674. doi: 10.1128/aem.41.3.670-674.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelland L. R., Moss S. H., Davies D. J. Leakage of 86Rb+ after ultraviolet irradiation of Escherichia coli K-12. Photochem Photobiol. 1984 Mar;39(3):329–335. doi: 10.1111/j.1751-1097.1984.tb08186.x. [DOI] [PubMed] [Google Scholar]
  12. Kogure K., Simidu U., Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979 Mar;25(3):415–420. doi: 10.1139/m79-063. [DOI] [PubMed] [Google Scholar]
  13. Kolc J., Becker R. S. The spectroscopy and photochemistry of naturally occurring and synthetic chromenes. Photochem Photobiol. 1970 Nov;12(5):383–393. doi: 10.1111/j.1751-1097.1970.tb06069.x. [DOI] [PubMed] [Google Scholar]
  14. Lloyd R. E., Rinkenberger J. L., Hug B. A., Tuveson R. W. Growing Escherichia coli mutants deficient in riboflavin biosynthesis with non-limiting riboflavin results in sensitization to inactivation by broad-spectrum near-ultraviolet light (320-400 nm). Photochem Photobiol. 1990 Oct;52(4):897–901. doi: 10.1111/j.1751-1097.1990.tb08699.x. [DOI] [PubMed] [Google Scholar]
  15. Mackay D., Eisenstark A., Webb R. B., Brown M. S. [Action spectra for lethality in recombination-less strains of Salmonella typhimurium and Escherichia coli]. Photochem Photobiol. 1976 Oct;24(4):337–343. doi: 10.1111/j.1751-1097.1976.tb06834.x. [DOI] [PubMed] [Google Scholar]
  16. Peak J. G., Peak M. J., Tuveson R. W. Ultraviolet action spectra for aerobic and anaerobic inactivation of Escherichia coli strains specifically sensitive and resistant to near ultraviolet radiations. Photochem Photobiol. 1983 Nov;38(5):541–543. doi: 10.1111/j.1751-1097.1983.tb03380.x. [DOI] [PubMed] [Google Scholar]
  17. Peak M. J., Johnson J. S., Tuveson R. W., Peak J. G. Inactivation by monochromatic near-UV radiation of an Escherichia coli hemA8 mutant grown with and without delta-aminolevulinic acid: the role of DNA vs membrane damage. Photochem Photobiol. 1987 Apr;45(4):473–478. doi: 10.1111/j.1751-1097.1987.tb05405.x. [DOI] [PubMed] [Google Scholar]
  18. Sammartano L. J., Tuveson R. W., Davenport R. Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol. 1986 Oct;168(1):13–21. doi: 10.1128/jb.168.1.13-21.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tuveson R. W., Larson R. A., Kagan J. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J Bacteriol. 1988 Oct;170(10):4675–4680. doi: 10.1128/jb.170.10.4675-4680.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tuveson R. W., Sammartano L. J. Sensitivity of hemA mutant Escherichia coli cells to inactivation by near-UV light depends on the level of supplementation with delta-aminolevulinic acid. Photochem Photobiol. 1986 Jun;43(6):621–626. doi: 10.1111/j.1751-1097.1986.tb05637.x. [DOI] [PubMed] [Google Scholar]
  21. Watson K. Microbial stress proteins. Adv Microb Physiol. 1990;31:183–223. doi: 10.1016/s0065-2911(08)60122-8. [DOI] [PubMed] [Google Scholar]
  22. Webb R. B., Brown M. S. Action spectra for oxygen-dependent and independent inactivation of Escherichia coli WP2s from 254 to 460 nm. Photochem Photobiol. 1979 Feb;29(2):407–409. doi: 10.1111/j.1751-1097.1979.tb07068.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES