Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 May;58(5):1496–1499. doi: 10.1128/aem.58.5.1496-1499.1992

Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor.

F Archibald 1, B Roy 1
PMCID: PMC195631  PMID: 1622216

Abstract

Many ligninolytic basidiomycete fungi have been shown to secrete a group of peroxidase isozymes whose sole function appears to be the peroxide-dependent oxidation of manganous [Mn(II)] to manganic [Mn(III)] ions. Manganic chelates and these Mn peroxidases have been implicated as central to the degradation of various natural and synthetic lignins and lignin-containing effluents by white rot (ligninolytic) fungi. Another group of enzymes, the laccases, are commonly secreted by wood-rotting fungi, but are generally regarded as being able to oxidize (and usually polymerize) only phenolic substrates. In this report it is shown that in the presence of appropriate oxidizable phenolic accessory substances or primary substrates, a variety of laccases and peroxidases catalyzing one-electron oxidations can also produce Mn(III) chelates from Mn(II).

Full text

PDF
1496

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald F. S., Fridovich I. Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys. 1982 May;215(2):589–596. doi: 10.1016/0003-9861(82)90120-5. [DOI] [PubMed] [Google Scholar]
  2. Archibald F. S., Fridovich I. The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys. 1982 Apr 1;214(2):452–463. doi: 10.1016/0003-9861(82)90049-2. [DOI] [PubMed] [Google Scholar]
  3. Archibald F. S., Tyree C. Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys. 1987 Aug 1;256(2):638–650. doi: 10.1016/0003-9861(87)90621-7. [DOI] [PubMed] [Google Scholar]
  4. Archibald F. Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol. 1986;13(1):63–109. doi: 10.3109/10408418609108735. [DOI] [PubMed] [Google Scholar]
  5. Datta A., Bettermann A., Kirk T. K. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol. 1991 May;57(5):1453–1460. doi: 10.1128/aem.57.5.1453-1460.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glenn J. K., Gold M. H. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1985 Nov 1;242(2):329–341. doi: 10.1016/0003-9861(85)90217-6. [DOI] [PubMed] [Google Scholar]
  7. Gold M. H., Kuwahara M., Chiu A. A., Glenn J. K. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1984 Nov 1;234(2):353–362. doi: 10.1016/0003-9861(84)90280-7. [DOI] [PubMed] [Google Scholar]
  8. KENTEN R. H., MANN P. J. The oxidation of manganese by illuminated chloroplast preparations. Biochem J. 1955 Oct;61(2):279–286. doi: 10.1042/bj0610279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karhunen E., Kantelinen A., Niku-Paavola M. L. Mn-dependent peroxidase from the lignin-degrading white rot fungus Phlebia radiata. Arch Biochem Biophys. 1990 May 15;279(1):25–31. doi: 10.1016/0003-9861(90)90458-b. [DOI] [PubMed] [Google Scholar]
  10. Kenten R. H., Mann P. J. The oxidation of manganese by peroxidase systems. Biochem J. 1950 Jan;46(1):67–73. doi: 10.1042/bj0460067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kersten P. J., Kalyanaraman B., Hammel K. E., Reinhammar B., Kirk T. K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J. 1990 Jun 1;268(2):475–480. doi: 10.1042/bj2680475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kersten P. J., Tien M., Kalyanaraman B., Kirk T. K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985 Mar 10;260(5):2609–2612. [PubMed] [Google Scholar]
  13. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  14. Kono Y., Takahashi M. A., Asada K. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts. Arch Biochem Biophys. 1976 Jun;174(2):454–462. doi: 10.1016/0003-9861(76)90373-8. [DOI] [PubMed] [Google Scholar]
  15. Lackner R., Srebotnik E., Messner K. Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1092–1098. doi: 10.1016/0006-291x(91)91004-v. [DOI] [PubMed] [Google Scholar]
  16. McEldoon J. P., Dordick J. S. Thiol and Mn(2+)-mediated oxidation of veratryl alcohol by horseradish peroxidase. J Biol Chem. 1991 Aug 5;266(22):14288–14293. [PubMed] [Google Scholar]
  17. Michel F. C., Jr, Dass S. B., Grulke E. A., Reddy C. A. Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl Environ Microbiol. 1991 Aug;57(8):2368–2375. doi: 10.1128/aem.57.8.2368-2375.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Popp J. L., Kalyanaraman B., Kirk T. K. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry. 1990 Nov 20;29(46):10475–10480. doi: 10.1021/bi00498a008. [DOI] [PubMed] [Google Scholar]
  19. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wariishi H., Dunford H. B., MacDonald I. D., Gold M. H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989 Feb 25;264(6):3335–3340. [PubMed] [Google Scholar]
  21. Wariishi H., Valli K., Gold M. H. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1991 Apr 15;176(1):269–275. doi: 10.1016/0006-291x(91)90919-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES