Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Jun;58(6):1869–1873. doi: 10.1128/aem.58.6.1869-1873.1992

Heat susceptibility of aquatic mycobacteria.

R Schulze-Röbbecke 1, K Buchholtz 1
PMCID: PMC195697  PMID: 1622262

Abstract

An investigation was carried out to measure the heat susceptibility of opportunistic mycobacteria frequently isolated from domestic water supply systems. The study was conducted under standardized conditions designed to resemble those found in oligotrophic aquatic habitats. Strains of the following species were tested: Mycobacterium avium, M. chelonae, M. fortuitum, M. intracellulare, M. kansasii (two strains), M. marinum, M. phlei, M. scrofulaceum, and M. xenopi. Suspensions of the test strains were exposed to temperatures of 50, 55, 60, and 70 degrees C; samples were taken at defined intervals to determine the concentration of survivors. From these data, the decimal reduction times were calculated for each test strain and test temperature. The results indicate that M. kansasii is more susceptible to heat than Legionella pneumophila, whereas the heat susceptibilities of M. fortuitum, M. intracellulare, and M. marinum lie in the same order of magnitude as that of L. pneumophila. The strains of M. avium, M. chelonae, M. phlei, M. scrofulaceum, and M. xenopi were found to be more thermoresistant than L. pneumophila, with the highest resistance being found in M. xenopi. Thermal measures to control L. pneumophila may therefore not be sufficient to control the last five mycobacterial species in contaminated water systems.

Full text

PDF
1869

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolan G., Reingold A. L., Carson L. A., Silcox V. A., Woodley C. L., Hayes P. S., Hightower A. W., McFarland L., Brown J. W., 3rd, Petersen N. J. Infections with Mycobacterium chelonei in patients receiving dialysis and using processed hemodialyzers. J Infect Dis. 1985 Nov;152(5):1013–1019. doi: 10.1093/infdis/152.5.1013. [DOI] [PubMed] [Google Scholar]
  2. Borneff J., Eggers H. J., Grün L., Gundermann K. O., Kuwert E., Lammers T., Primavesi C. A., Rotter M., Schmidt-Lorenz W., Schubert R. Richtlinien für die Prüfung und Bewertung chemischer Desinfektionsverfahren - erster Teilabschnitt - (Stand 1.1.1981). I. In vitro-Tests. II. Versuche unter praxisnahen Bedingungen. 1. Hygienische Händedesinfektion. 2. Chirurgische Händedesinfektion. Zentralbl Bakteriol Mikrobiol Hyg B. 1981;172(6):534–562. [PubMed] [Google Scholar]
  3. Collins C. H., Grange J. M., Yates M. D. Mycobacteria in water. J Appl Bacteriol. 1984 Oct;57(2):193–211. doi: 10.1111/j.1365-2672.1984.tb01384.x. [DOI] [PubMed] [Google Scholar]
  4. Costrini A. M., Mahler D. A., Gross W. M., Hawkins J. E., Yesner R., D'Esopo N. D. Clinical and roentgenographic features of nosocomial pulmonary disease due to Mycobacterium xenopi. Am Rev Respir Dis. 1981 Jan;123(1):104–109. doi: 10.1164/arrd.1981.123.1.104. [DOI] [PubMed] [Google Scholar]
  5. Falkinham J. O., 3rd, Parker B. C., Gruft H. Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am Rev Respir Dis. 1980 Jun;121(6):931–937. doi: 10.1164/arrd.1980.121.6.931. [DOI] [PubMed] [Google Scholar]
  6. Good R. C. Opportunistic pathogens in the genus Mycobacterium. Annu Rev Microbiol. 1985;39:347–369. doi: 10.1146/annurev.mi.39.100185.002023. [DOI] [PubMed] [Google Scholar]
  7. Graham L., Jr, Warren N. G., Tsang A. Y., Dalton H. P. Mycobacterium avium complex pseudobacteriuria from a hospital water supply. J Clin Microbiol. 1988 May;26(5):1034–1036. doi: 10.1128/jcm.26.5.1034-1036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horsburgh C. R., Jr Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991 May 9;324(19):1332–1338. doi: 10.1056/NEJM199105093241906. [DOI] [PubMed] [Google Scholar]
  9. Kaustová J., Olsovský Z., Kubín M., Zatloukal O., Pelikán M., Hradil V. Endemic occurrence of Mycobacterium kansasii in water-supply systems. J Hyg Epidemiol Microbiol Immunol. 1981;25(1):24–30. [PubMed] [Google Scholar]
  10. Lowry P. W., Jarvis W. R., Oberle A. D., Bland L. A., Silberman R., Bocchini J. A., Jr, Dean H. D., Swenson J. M., Wallace R. J., Jr Mycobacterium chelonae causing otitis media in an ear-nose-and-throat practice. N Engl J Med. 1988 Oct 13;319(15):978–982. doi: 10.1056/NEJM198810133191504. [DOI] [PubMed] [Google Scholar]
  11. McSwiggan D. A., Collins C. H. The isolation of M. kansasii and M. xenopi from water systems. Tubercle. 1974 Dec;55(4):291–297. doi: 10.1016/0041-3879(74)90038-5. [DOI] [PubMed] [Google Scholar]
  12. Meenhorst P. L., Reingold A. L., Groothuis D. G., Gorman G. W., Wilkinson H. W., McKinney R. M., Feeley J. C., Brenner D. J., van Furth R. Water-related nosocomial pneumonia caused by Legionella pneumophila serogroups 1 and 10. J Infect Dis. 1985 Aug;152(2):356–364. doi: 10.1093/infdis/152.2.356. [DOI] [PubMed] [Google Scholar]
  13. O'Brien R. J., Geiter L. J., Snider D. E., Jr The epidemiology of nontuberculous mycobacterial diseases in the United States. Results from a national survey. Am Rev Respir Dis. 1987 May;135(5):1007–1014. doi: 10.1164/arrd.1987.135.5.1007. [DOI] [PubMed] [Google Scholar]
  14. Pelletier P. A., du Moulin G. C., Stottmeier K. D. Mycobacteria in public water supplies: comparative resistance to chlorine. Microbiol Sci. 1988 May;5(5):147–148. [PubMed] [Google Scholar]
  15. Schofield G. M., Locci R. Colonization of components of a model hot water system by Legionella pneumophila. J Appl Bacteriol. 1985 Feb;58(2):151–162. doi: 10.1111/j.1365-2672.1985.tb01442.x. [DOI] [PubMed] [Google Scholar]
  16. Schulze-Röbbecke R., Jung K. D., Pullmann H., Hundgeburth J. Sanierung eines mit Legionella pneumophila kontaminierten Krankenhaus-Warmwassersystems. Zentralbl Hyg Umweltmed. 1990 May;190(1-2):84–100. [PubMed] [Google Scholar]
  17. Schulze-Röbbecke R., Rödder M., Exner M. Vermehrungs- und Abtötungstemperaturen natürlich vorkommender Legionellen. Zentralbl Bakteriol Mikrobiol Hyg B. 1987 Aug;184(6):495–500. [PubMed] [Google Scholar]
  18. Stout J. E., Best M. G., Yu V. L. Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat eradication methods in water distribution systems. Appl Environ Microbiol. 1986 Aug;52(2):396–399. doi: 10.1128/aem.52.2.396-399.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wright E. P., Collins C. H., Yates M. D. Mycobacterium xenopi and Mycobacterium kansasii in a hospital water supply. J Hosp Infect. 1985 Jun;6(2):175–178. [PubMed] [Google Scholar]
  20. Wright J. B., Ruseska I., Athar M. A., Corbett S., Costerton J. W. Legionella pneumophila grows adherent to surfaces in vitro and in situ. Infect Control Hosp Epidemiol. 1989 Sep;10(9):408–415. doi: 10.1086/646062. [DOI] [PubMed] [Google Scholar]
  21. du Moulin G. C., Sherman I. H., Hoaglin D. C., Stottmeier K. D. Mycobacterium avium complex, an emerging pathogen in Massachusetts. J Clin Microbiol. 1985 Jul;22(1):9–12. doi: 10.1128/jcm.22.1.9-12.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. du Moulin G. C., Stottmeier K. D., Pelletier P. A., Tsang A. Y., Hedley-Whyte J. Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 1988 Sep 16;260(11):1599–1601. doi: 10.1001/jama.260.11.1599. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES