Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Jun;58(6):1874–1877. doi: 10.1128/aem.58.6.1874-1877.1992

Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4.

E Grund 1, B Denecke 1, R Eichenlaub 1
PMCID: PMC195698  PMID: 1622263

Abstract

Rhodococcus sp. strain B4, isolated from a soil sample contaminated with polycyclic aromatic hydrocarbons, grows with naphthalene as the sole source of carbon and energy. Salicylate and gentisate were identified as intermediates in the catabolism of naphthalene. In contrast to the well-studied catabolic pathway encoded by the NAH7 plasmid of Pseudomonas putida, salicylate does not induce the genes of the naphthalene-degradative pathway in Rhodococcus sp. strain B4. The key enzymes of naphthalene degradation in Rhodococcus sp. strain B4 have unusual cofactor requirements. The 1,2-dihydroxynaphthalene oxygenase activity depends on NADH and the salicylate 5-hydroxylase requires NADPH, ATP, and coenzyme A.

Full text

PDF
1874

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenschmidt U., Oswald B., Fuchs G. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol. 1991 Sep;173(17):5494–5501. doi: 10.1128/jb.173.17.5494-5501.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford R. L. Degradation of homogentisate by strains of Bacillus and Moraxella. Can J Microbiol. 1976 Feb;22(2):276–280. doi: 10.1139/m76-037. [DOI] [PubMed] [Google Scholar]
  3. Crawford R. L., Frick T. D. Rapid spectrophotometric differentiation between glutathione-dependent and glutathione-independent gentisate and homogentisate pathways. Appl Environ Microbiol. 1977 Aug;34(2):170–174. doi: 10.1128/aem.34.2.170-174.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford R. L., Hutton S. W., Chapman P. J. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol. 1975 Mar;121(3):794–799. doi: 10.1128/jb.121.3.794-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. I., Evans W. C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J. 1964 May;91(2):251–261. doi: 10.1042/bj0910251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunn N. W., Gunsalus I. C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol. 1973 Jun;114(3):974–979. doi: 10.1128/jb.114.3.974-979.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Einarsdottir G. H., Stankovich M. T., Tu S. C. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding. Biochemistry. 1988 May 3;27(9):3277–3285. doi: 10.1021/bi00409a023. [DOI] [PubMed] [Google Scholar]
  8. Ensley B. D., Gibson D. T., Laborde A. L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol. 1982 Mar;149(3):948–954. doi: 10.1128/jb.149.3.948-954.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans W. C., Fuchs G. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol. 1988;42:289–317. doi: 10.1146/annurev.mi.42.100188.001445. [DOI] [PubMed] [Google Scholar]
  10. Fortnagel P., Harms H., Wittich R. M., Krohn S., Meyer H., Sinnwell V., Wilkes H., Francke W. Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27. Appl Environ Microbiol. 1990 Apr;56(4):1148–1156. doi: 10.1128/aem.56.4.1148-1156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grund E., Knorr C., Eichenlaub R. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Appl Environ Microbiol. 1990 May;56(5):1459–1464. doi: 10.1128/aem.56.5.1459-1464.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KATAGIRI M., MAENO H., YAMAMOTO S., HAYAISHI O., KITAO T., OAE S. SALICYLATE HYDROXYLASE, A MONOOXYGENASE REQUIRING FLAVIN ADENINE DINUCLEOTIDE. II. THE MECHANISM OF SALICYLATE HYDROXYLATION TO CATECHOL. J Biol Chem. 1965 Aug;240:3414–3417. [PubMed] [Google Scholar]
  13. Löffler F., Müller R., Lingens F. Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction. Biochem Biophys Res Commun. 1991 May 15;176(3):1106–1111. doi: 10.1016/0006-291x(91)90398-q. [DOI] [PubMed] [Google Scholar]
  14. Monticello D. J., Bakker D., Schell M., Finnerty W. R. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate. Appl Environ Microbiol. 1985 Apr;49(4):761–764. doi: 10.1128/aem.49.4.761-764.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patel T. R., Barnsley E. A. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacteriol. 1980 Aug;143(2):668–673. doi: 10.1128/jb.143.2.668-673.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scholten J. D., Chang K. H., Babbitt P. C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991 Jul 12;253(5016):182–185. doi: 10.1126/science.1853203. [DOI] [PubMed] [Google Scholar]
  17. Seiler H. Identification key for coryneform bacteria derived by numerical taxonomic studies. J Gen Microbiol. 1983 May;129(5):1433–1471. doi: 10.1099/00221287-129-5-1433. [DOI] [PubMed] [Google Scholar]
  18. Shamsuzzaman K. M., Barnsley E. A. The regulation of naphthalene metabolism in pseudomonads. Biochem Biophys Res Commun. 1974 Sep 23;60(2):582–589. doi: 10.1016/0006-291x(74)90280-0. [DOI] [PubMed] [Google Scholar]
  19. White-Stevens R. H., Kamin H., Gibson Q. H. Studies of a flavoprotein, salicylate hydroxylse. I. Enzyme mechanism. J Biol Chem. 1972 Apr 25;247(8):2371–2381. [PubMed] [Google Scholar]
  20. Yen K. M., Serdar C. M. Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol. 1988;15(3):247–268. doi: 10.3109/10408418809104459. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES