Abstract
A highly sensitive denitrification bioassay was developed for detection of NO3- and NO2- in rhizosphere soil samples. Denitrifying Pseudomonas aeruginosa ON12 was grown anaerobically in citrate (30 mM) minimal medium with KClO3 (10 mM) and NaNO2 (3 mM), which gave cells capable of NO2- reduction to N2O but incapable of NO3- reduction to NO2-. Growth on citrate minimal medium further resulted in the absence of N2O reduction. When added to small soil samples in O2-free vials, such cells could be used to convert the indigenous NO2- pool to N2O, which was subsequently quantified by gas chromatography. Cells grown in KClO3-free citrate medium with 10 mM NaNO3 as the electron acceptor were capable of reducing both NO3- and NO2-, and these cells could subsequently be added to the sample to convert the indigenous NO3- pool to N2O. Concentrations of both NO3- and NO2- were thus determined as N2O, with a detection limit of approximately 10 pmol of N. The bioassay could be used to determine NO3- and NO2- pools in 10-mg soil samples taken along a microgradient in the rhizosphere of field-grown barley plants. At both low (10%, wt/wt) and high (18%, wt/wt) water content, relatively high levels of NO2- were found in the rhizosphere compared with bulk soil. Under dry conditions, NO3- was also more abundant in the rhizosphere than in the bulk soil, whereas such a difference was not observed at the high water content. The roles of plant metabolism and bacterial nitrification and denitrification processes for NO3- and NO2- availability in the rhizosphere are discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Christensen S., Tiedje J. M. Sub-Parts-Per-Billion Nitrate Method: Use of an N(2)O-Producing Denitrifier to Convert NO(3) or NO(3) to N(2)O. Appl Environ Microbiol. 1988 Jun;54(6):1409–1413. doi: 10.1128/aem.54.6.1409-1413.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downes M. T. Aquatic nitrogen transformations at low oxygen concentrations. Appl Environ Microbiol. 1988 Jan;54(1):172–175. doi: 10.1128/aem.54.1.172-175.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths L., Cole J. A. Lack of redox control of the anaerobically-induced nirB+ gene of Escherichia coli K-12. Arch Microbiol. 1987 May;147(4):364–369. doi: 10.1007/BF00406134. [DOI] [PubMed] [Google Scholar]
- Matsubara T., Frunzke K., Zumft W. G. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J Bacteriol. 1982 Mar;149(3):816–823. doi: 10.1128/jb.149.3.816-823.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stouthamer A. H. Biochemistry and genetics of nitrate reductase in bacteria. Adv Microb Physiol. 1976;14(11):315–375. doi: 10.1016/s0065-2911(08)60230-1. [DOI] [PubMed] [Google Scholar]
- Sweerts J. P., de Beer D. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake vechten, the Netherlands). Appl Environ Microbiol. 1989 Mar;55(3):754–757. doi: 10.1128/aem.55.3.754-757.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
