Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Aug;58(8):2458–2462. doi: 10.1128/aem.58.8.2458-2462.1992

Development and Application of a New Method To Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin

Carsten S Jacobsen 1,†,*, Ole F Rasmussen 1,
PMCID: PMC195803  PMID: 16348750

Abstract

A new method for the extraction of bacterial DNA from soil has been developed. Soil samples of 50 g were dispersed, and bacteria were released by use of a cation-exchange resin; subsequently, bacteria were separated from soil particles by low-speed centrifugation and lysed with lysozyme and ionic detergent, and the DNA was then purified by CsCl-ethidium bromide equilibrium density centrifugation. The extracted DNA was of high molecular weight and sufficiently pure for restriction enzyme digestion, DNA-DNA hybridization, and amplification by the polymerase chain reaction. The advantages of the new method are that the separation of bacteria from soil is considerably faster than by repeated blending, more samples can be handled, and furthermore no aerosols are formed during separation. Also, we investigated whether the CsCl-ethidium bromide equilibrium density centrifugation could be replaced by purification using Gene-Clean. However, this method produced DNAs which were insufficiently pure for several types of analysis. The new method was used to study survival of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading Pseudomonas cepacia DBO1 (pRO101) in unamended soil and in soil amended with 2,4-D. We found that the degrading strain, irrespective of inoculation level, was able to grow to the same high numbers in soil amended with 2,4-D, while the strain in nonamended soil were maintained at the inoculation level. Detection based on DNA extraction and subsequent dot blot DNA-DNA hybridization was in accordance with detection by plating on selective medium.

Full text

PDF
2458

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Don R. H., Pemberton J. M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol. 1981 Feb;145(2):681–686. doi: 10.1128/jb.145.2.681-686.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harker A. R., Olsen R. H., Seidler R. J. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR. J Bacteriol. 1989 Jan;171(1):314–320. doi: 10.1128/jb.171.1.314-320.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Herron P. R., Wellington E. M. New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1406–1412. doi: 10.1128/aem.56.5.1406-1412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lorenz M. G., Wackernagel W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol. 1987 Dec;53(12):2948–2952. doi: 10.1128/aem.53.12.2948-2952.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Romanowski G., Lorenz M. G., Wackernagel W. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol. 1991 Apr;57(4):1057–1061. doi: 10.1128/aem.57.4.1057-1061.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sayler G. S., Layton A. C. Environmental application of nucleic acid hybridization. Annu Rev Microbiol. 1990;44:625–648. doi: 10.1146/annurev.mi.44.100190.003205. [DOI] [PubMed] [Google Scholar]
  9. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  10. Steffan R. J., Goksøyr J., Bej A. K., Atlas R. M. Recovery of DNA from soils and sediments. Appl Environ Microbiol. 1988 Dec;54(12):2908–2915. doi: 10.1128/aem.54.12.2908-2915.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tsai Y. L., Olson B. H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991 Apr;57(4):1070–1074. doi: 10.1128/aem.57.4.1070-1074.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES