Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Aug;58(8):2474–2478. doi: 10.1128/aem.58.8.2474-2478.1992

Two types of bacterial alginate lyases.

M Kitamikado 1, C H Tseng 1, K Yamaguchi 1, T Nakamura 1
PMCID: PMC195806  PMID: 1514793

Abstract

The extracellular alginate lyases were purified from Vibrio harveyi AL-128 and V. alginolyticus ATCC 17749. The former enzyme appears to be specific for alpha-1,4 bonds involving L-guluronate units in alginate, whereas the latter exhibits specificity for beta-1,4 bonds involving D-mannuronate units. The molecular weights of the enzymes were estimated to be 57,000 and 47,000, and they had isoelectric points of 4.3 and 4.6, respectively. The enzyme from strain AL-128 was most active at NaCl concentrations of 0.3 to 1.0 M. Optimum activity of the enzyme from strain ATCC 17749 was found in the presence of 5 to 10 mM CaCl2.

Full text

PDF
2474

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd J., Turvey J. R. Isolation of poly-alpha-L-guluronate lyase from Klebsiella aerogenes. Carbohydr Res. 1977 Aug;57:163–171. doi: 10.1016/s0008-6215(00)81928-x. [DOI] [PubMed] [Google Scholar]
  2. Doubet R. S., Quatrano R. S. Isolation of marine bacteria capable of producing specific lyases for alginate degradation. Appl Environ Microbiol. 1982 Sep;44(3):754–756. doi: 10.1128/aem.44.3.754-756.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hansen J. B., Doubet R. S., Ram J. Alginase enzyme production by Bacillus circulans. Appl Environ Microbiol. 1984 Apr;47(4):704–709. doi: 10.1128/aem.47.4.704-709.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kitamikado M., Yamaguchi K., Tseng C. H., Okabe B. Method designed to detect alginate-degrading bacteria. Appl Environ Microbiol. 1990 Sep;56(9):2939–2940. doi: 10.1128/aem.56.9.2939-2940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Linker A., Evans L. R. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. J Bacteriol. 1984 Sep;159(3):958–964. doi: 10.1128/jb.159.3.958-964.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  8. Min K. H., Sasaki S. F., Kashiwabara Y., Suzuki H., Nisizawa K. Multiple components of endo-polyguluronide lyase of Pseudomonas sp. J Biochem. 1977 Mar;81(3):539–546. doi: 10.1093/oxfordjournals.jbchem.a131488. [DOI] [PubMed] [Google Scholar]
  9. Nakada H. I., Sweeny P. C. Alginic acid degradation by eliminases from abalone hepatopancreas. J Biol Chem. 1967 Mar 10;242(5):845–851. [PubMed] [Google Scholar]
  10. Nisizawa K., Fujibayashi S., Kashiwabara Y. Alginate lyases in the hepatopancreas of a marine mollusc, Dolabella auricula Solander. J Biochem. 1968 Jul;64(1):25–37. doi: 10.1093/oxfordjournals.jbchem.a128859. [DOI] [PubMed] [Google Scholar]
  11. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  12. Stevens R. A., Levin R. E. Purification and characteristics of an alginase from Alginovibrio aquatilis. Appl Environ Microbiol. 1977 May;33(5):1156–1161. doi: 10.1128/aem.33.5.1156-1161.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES