Abstract
When the fungus Gibberella fujikuroi ATCC 12616 was grown in fermentor cultures, both intracellular kaurene biosynthetic activities and extracellular GA3 accumulation reached high levels when exogenous nitrogen was depleted in the culture. Similar patterns were exhibited by several nonrelated enzymatic activities, such as formamidase and urease, suggesting that all are subject to nitrogen regulation. The behavior of the enzymes involved in nitrogen assimilation (glutamine synthetase, glutamate dehydrogenase, and glutamate synthase) during fungal growth in different nitrogen sources suggests that glutamine is the final product of nitrogen assimilation in G. fujikuroi. When ammonium or glutamine was added to hormone-producing cultures, extracellular GA3 did not accumulate. However, when the conversion of ammonium into glutamine was inhibited by L-methionine-DL-sulfoximine, only glutamine maintained this effect. These results suggest that glutamine may well be the metabolite effector in nitrogen repression of GA3 synthesis, as well as in other nonrelated enzymatic activities in G. fujikuroi.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharonowitz Y. Nitrogen metabolite regulation of antibiotic biosynthesis. Annu Rev Microbiol. 1980;34:209–233. doi: 10.1146/annurev.mi.34.100180.001233. [DOI] [PubMed] [Google Scholar]
- Allam A. M., Elzainy T. A. Purine catabolism in Fusarium moniliforme. J Gen Microbiol. 1970 Oct;63(2):183–187. doi: 10.1099/00221287-63-2-183. [DOI] [PubMed] [Google Scholar]
- Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
- Ashman P. J., Mackenzie A., Bramley P. M. Characterization of ent-kaurene oxidase activity from Gibberella fujikuroi. Biochim Biophys Acta. 1990 Nov 9;1036(2):151–157. doi: 10.1016/0304-4165(90)90027-t. [DOI] [PubMed] [Google Scholar]
- BORROW A., BROWN S., JEFFERYS E. G., KESSELL R. H., LLOYD E. C., LLOYD P. B., ROTHWELL A., ROTHWELL B., SWAIT J. C. THE KINETICS OF METABOLISM OF GIBBERELLA FUJIKUROI IN STIRRED CULTURE. Can J Microbiol. 1964 Jun;10:407–444. doi: 10.1139/m64-054. [DOI] [PubMed] [Google Scholar]
- Boland M. J., Benny A. G. Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. Eur J Biochem. 1977 Oct 3;79(2):355–362. doi: 10.1111/j.1432-1033.1977.tb11816.x. [DOI] [PubMed] [Google Scholar]
- Candau R., Avalos J., Cerdá-Olmedo E. Regulation of Gibberellin Biosynthesis in Gibberella fujikuroi. Plant Physiol. 1992 Nov;100(3):1184–1188. doi: 10.1104/pp.100.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fall R. R., West C. A. Purification and properties of kaurene synthetase from Fusarium moniliforme. J Biol Chem. 1971 Nov 25;246(22):6913–6928. [PubMed] [Google Scholar]
- Hummelt G., Mora J. NADH-dependent glutamate synthase and nitrogen metabolism in Neurospora crassa. Biochem Biophys Res Commun. 1980 Jan 15;92(1):127–133. doi: 10.1016/0006-291x(80)91529-6. [DOI] [PubMed] [Google Scholar]
- Hynes M. J. Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. J Bacteriol. 1974 Dec;120(3):1116–1123. doi: 10.1128/jb.120.3.1116-1123.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J. Induction and repression of amidase enzymes in Aspergillus nidulans. J Bacteriol. 1970 Aug;103(2):482–487. doi: 10.1128/jb.103.2.482-487.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. W., Coolbaugh R. C. Light-Stimulated Gibberellin Biosynthesis in Gibberella fujikuroi. Plant Physiol. 1990 Dec;94(4):1696–1701. doi: 10.1104/pp.94.4.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnstone I. L., McCabe P. C., Greaves P., Gurr S. J., Cole G. E., Brow M. A., Unkles S. E., Clutterbuck A. J., Kinghorn J. R., Innis M. A. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene. 1990 Jun 15;90(2):181–192. doi: 10.1016/0378-1119(90)90178-t. [DOI] [PubMed] [Google Scholar]
- Lara M., Blanco L., Campomanes M., Calva E., Palacios R., Mora J. Physiology of ammonium assimilation in Neurospora crassa. J Bacteriol. 1982 Apr;150(1):105–112. doi: 10.1128/jb.150.1.105-112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H., Fu Y. H., Marzluf G. A. Molecular cloning and characterization of alc the gene encoding allantoicase of Neurospora crassa. Mol Gen Genet. 1990 Jun;222(1):140–144. doi: 10.1007/BF00283035. [DOI] [PubMed] [Google Scholar]
- MUFTIC M. K. A NEW PHENOL-HYPOCHLORITE REACTION FOR AMMONIA. Nature. 1964 Feb 8;201:622–623. doi: 10.1038/201622a0. [DOI] [PubMed] [Google Scholar]
- Nes W. D., Hanners P. K., Parish E. J. Control of fungal sterol C-24 transalkylation: importance to developmental regulation. Biochem Biophys Res Commun. 1986 Sep 14;139(2):410–415. doi: 10.1016/s0006-291x(86)80006-7. [DOI] [PubMed] [Google Scholar]
- Nüesch J., Heim J., Treichler H. J. The biosynthesis of sulfur-containing beta-lactam antibiotics. Annu Rev Microbiol. 1987;41:51–75. doi: 10.1146/annurev.mi.41.100187.000411. [DOI] [PubMed] [Google Scholar]
- Premakumar R., Sorger G. J., Gooden D. Repression of nitrate reductase in Neurospora studied by using L-methionine-DL-sulfoximine and glutamine auxotroph gln-1b. J Bacteriol. 1980 Jul;143(1):411–415. doi: 10.1128/jb.143.1.411-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scazzocchio C., Darlington A. J. The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim Biophys Acta. 1968 Sep 24;166(2):557–568. doi: 10.1016/0005-2787(68)90243-8. [DOI] [PubMed] [Google Scholar]
- Wiame J. M., Grenson M., Arst H. N., Jr Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88. doi: 10.1016/s0065-2911(08)60394-x. [DOI] [PubMed] [Google Scholar]