Abstract
A new isolate of the aceticlastic methanogen Methanothrix thermophila utilizes only acetate as the sole carbon and energy source for methanogenesis (Y. Kamagata and E. Mikami, Int. J. Syst. Bacteriol. 41:191-196, 1991). ATPase activity in its membrane was found, and ATP hydrolysis activity in the pH range of 5.5 to 8.0 in the presence of Mg2+ was observed. It had maximum activity at around 70 degrees C and was specifically stimulated up to sixfold by 50 mM NaHSO3. The proton ATPase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the membrane ATPase activity, but azide, a potent inhibitor of F0F1 ATPase (H(+)-translocating ATPase of oxidative phosphorylation), did not. Since the enzyme was tightly bound to the membranes and could not be solubilized with dilute buffer containing EDTA, the nonionic detergent nonanoyl-N-methylglucamide (0.5%) was used to solubilize it from the membranes. The purified ATPase complex in the presence of the detergent was also sensitive to N,N'-dicyclohexylcarbodiimide, and other properties were almost the same as those in the membrane-associated form. The purified enzyme revealed at least five kinds of subunits on a sodium dodecyl sulfate-polyacrylamide gel, and their molecular masses were estimated to be 67, 52, 37, 28, and 22 kDa, respectively. The N-terminal amino acid sequences of the 67- and 52-kDa subunits had much higher similarity with those of the 64 (alpha)- and 50 (beta)-kDa subunits of the Methanosarcina barkeri ATPase and were also similar to those of the corresponding subunits of other archaeal ATPases. The alpha beta complex of the M. barkeri ATPase has ATP-hydrolyzing activity, suggesting that a catalytic part of the Methanothrix ATPase contains at least the 67- and 52-kDa subunits.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai H., Berne M., Terres G., Terres H., Puopolo K., Forgac M. Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase. Biochemistry. 1987 Oct 20;26(21):6632–6638. doi: 10.1021/bi00395a011. [DOI] [PubMed] [Google Scholar]
- Blaut M., Gottschalk G. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem. 1984 May 15;141(1):217–222. doi: 10.1111/j.1432-1033.1984.tb08178.x. [DOI] [PubMed] [Google Scholar]
- Bott M., Thauer R. K. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem. 1989 Feb 1;179(2):469–472. doi: 10.1111/j.1432-1033.1989.tb14576.x. [DOI] [PubMed] [Google Scholar]
- Bowman B. J., Bowman E. J. H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol. 1986;94(2):83–97. doi: 10.1007/BF01871190. [DOI] [PubMed] [Google Scholar]
- Denda K., Konishi J., Oshima T., Date T., Yoshida M. Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biol Chem. 1988 Nov 25;263(33):17251–17254. [PubMed] [Google Scholar]
- Denda K., Konishi J., Oshima T., Date T., Yoshida M. The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its alpha-subunit. J Biol Chem. 1988 May 5;263(13):6012–6015. [PubMed] [Google Scholar]
- Dharmavaram R., Gillevet P., Konisky J. Nucleotide sequence of the gene encoding the vanadate-sensitive membrane-associated ATPase of Methanococcus voltae. J Bacteriol. 1991 Mar;173(6):2131–2133. doi: 10.1128/jb.173.6.2131-2133.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doddema H. J., Hutten T. J., van der Drift C., Vogels G. D. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. J Bacteriol. 1978 Oct;136(1):19–23. doi: 10.1128/jb.136.1.19-23.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferry J. G. Methane from acetate. J Bacteriol. 1992 Sep;174(17):5489–5495. doi: 10.1128/jb.174.17.5489-5495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ihara K., Mukohata Y. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch Biochem Biophys. 1991 Apr;286(1):111–116. doi: 10.1016/0003-9861(91)90015-b. [DOI] [PubMed] [Google Scholar]
- Inatomi K. Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. J Bacteriol. 1986 Sep;167(3):837–841. doi: 10.1128/jb.167.3.837-841.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inatomi K., Eya S., Maeda M., Futai M. Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of eukaryotic vacuolar and F0F1-ATPases. J Biol Chem. 1989 Jul 5;264(19):10954–10959. [PubMed] [Google Scholar]
- Inatomi K., Maeda M., Futai M. Dicyclohexylcarbodiimide-binding protein is a subunit of the Methanosarcina barkeri ATPase complex. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1585–1590. doi: 10.1016/0006-291x(89)90856-5. [DOI] [PubMed] [Google Scholar]
- Inatomi K., Maeda M. Isolation of subunits from Methanosarcina barkeri ATPase: nucleotide-binding site in the alpha subunit. J Bacteriol. 1988 Dec;170(12):5960–5962. doi: 10.1128/jb.170.12.5960-5962.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jetten M. S., Stams A. J., Zehnder A. J. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J Bacteriol. 1989 Oct;171(10):5430–5435. doi: 10.1128/jb.171.10.5430-5435.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamagata Y., Kawasaki H., Oyaizu H., Nakamura K., Mikami E., Endo G., Koga Y., Yamasato K. Characterization of three thermophilic strains of Methanothrix ("Methanosaeta") thermophila sp. nov. and rejection of Methanothrix ("Methanosaeta") thermoacetophila. Int J Syst Bacteriol. 1992 Jul;42(3):463–468. doi: 10.1099/00207713-42-3-463. [DOI] [PubMed] [Google Scholar]
- Kane P. M., Yamashiro C. T., Stevens T. H. Biochemical characterization of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1989 Nov 15;264(32):19236–19244. [PubMed] [Google Scholar]
- Konishi J., Denda K., Oshima T., Wakagi T., Uchida E., Ohsumi Y., Anraku Y., Matsumoto T., Wakabayashi T., Mukohata Y. Archaebacterial ATPases: relationship to other ion-translocating ATPase families examined in terms of immunological cross-reactivity. J Biochem. 1990 Oct;108(4):554–559. doi: 10.1093/oxfordjournals.jbchem.a123241. [DOI] [PubMed] [Google Scholar]
- Konishi J., Wakagi T., Oshima T., Yoshida M. Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem. 1987 Dec;102(6):1379–1387. doi: 10.1093/oxfordjournals.jbchem.a122184. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lübben M., Schäfer G. A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem. 1987 May 4;164(3):533–540. doi: 10.1111/j.1432-1033.1987.tb11159.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Moriyama Y., Nelson N. Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. J Biol Chem. 1987 Oct 25;262(30):14723–14729. [PubMed] [Google Scholar]
- Mountfort D. O. Evidence from ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1346–1351. doi: 10.1016/0006-291x(78)91151-8. [DOI] [PubMed] [Google Scholar]
- Nanba T., Mukohata Y. A membrane-bound ATPase from Halobacterium halobium: purification and characterization. J Biochem. 1987 Sep;102(3):591–598. doi: 10.1093/oxfordjournals.jbchem.a122092. [DOI] [PubMed] [Google Scholar]
- Peinemann S., Müller V., Blaut M., Gottschalk G. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J Bacteriol. 1988 Mar;170(3):1369–1372. doi: 10.1128/jb.170.3.1369-1372.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheel E., Schäfer G. Chemiosmotic energy conversion and the membrane ATPase of Methanolobus tindarius. Eur J Biochem. 1990 Feb 14;187(3):727–735. doi: 10.1111/j.1432-1033.1990.tb15360.x. [DOI] [PubMed] [Google Scholar]
- Smith P. H., Mah R. A. Kinetics of acetate metabolism during sludge digestion. Appl Microbiol. 1966 May;14(3):368–371. doi: 10.1128/am.14.3.368-371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thauer R. K., Möller-Zinkhan D., Spormann A. M. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol. 1989;43:43–67. doi: 10.1146/annurev.mi.43.100189.000355. [DOI] [PubMed] [Google Scholar]
- Yokoyama K., Oshima T., Yoshida M. Thermus thermophilus membrane-associated ATPase. Indication of a eubacterial V-type ATPase. J Biol Chem. 1990 Dec 15;265(35):21946–21950. [PubMed] [Google Scholar]
- Zhang J., Myers M., Forgac M. Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem. 1992 May 15;267(14):9773–9778. [PubMed] [Google Scholar]

