Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jan;175(1):288–290. doi: 10.1128/jb.175.1.288-290.1993

Host RecJ is required for growth of P22 erf bacteriophage.

M J Mahan 1, A Garzón 1, J Casadesús 1
PMCID: PMC196124  PMID: 8416903

Abstract

Growth of bacteriophage P22 erf is known to require host RecA recombination function. We show that the RecA function is necessary but not sufficient to restore the plaque-forming ability of phage P22 erf; such mutant phage also requires host RecJ function. The residual efficiency of plaquing of P22 erf in a recJ background (0.03%) is completely abolished in recJ recB hosts (< 0.001%), suggesting that the RecBCD nuclease can provide an alternative function allowing phage growth. One tentative explanation is that circularization of P22 erf DNA mostly proceeds through the RecF pathway of recombination; however, less efficient circularization via the RecBCD pathway may also occur. In a recJ background, lysates obtained upon induction of an erf prophage show reduced yield (10%), suggesting that growth of P22 erf may require host RecJ in a step(s) other than circularization of phage DNA.

Full text

PDF
288

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., Matz M. J. A recombination function essential to the growth of bacteriophage P22. J Mol Biol. 1970 Dec 28;54(3):417–440. doi: 10.1016/0022-2836(70)90119-1. [DOI] [PubMed] [Google Scholar]
  2. Clark A. J. rec genes and homologous recombination proteins in Escherichia coli. Biochimie. 1991 Apr;73(4):523–532. doi: 10.1016/0300-9084(91)90124-j. [DOI] [PubMed] [Google Scholar]
  3. Fishel R. A., James A. A., Kolodner R. recA-independent general genetic recombination of plasmids. Nature. 1981 Nov 12;294(5837):184–186. doi: 10.1038/294184a0. [DOI] [PubMed] [Google Scholar]
  4. James A. A., Morrison P. T., Kolodner R. Isolation of genetic elements that increase frequencies of plasmid recombinants. Nature. 1983 May 19;303(5914):256–259. doi: 10.1038/303256a0. [DOI] [PubMed] [Google Scholar]
  5. Kolodner R., Fishel R. A., Howard M. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol. 1985 Sep;163(3):1060–1066. doi: 10.1128/jb.163.3.1060-1066.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laban A., Cohen A. Interplasmidic and intraplasmidic recombination in Escherichia coli K-12. Mol Gen Genet. 1981;184(2):200–207. doi: 10.1007/BF00272905. [DOI] [PubMed] [Google Scholar]
  7. Lovett S. T., Clark A. J. Cloning of the Escherichia coli recJ chromosomal region and identification of its encoded proteins. J Bacteriol. 1985 Apr;162(1):280–285. doi: 10.1128/jb.162.1.280-285.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lovett S. T., Kolodner R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2627–2631. doi: 10.1073/pnas.86.8.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mahan M. J., Casadesus J., Roth J. R. The Salmonella typhimurium RecJ function permits growth of P22 abc phage on recBCD+ hosts. Mol Gen Genet. 1992 Apr;232(3):470–478. doi: 10.1007/BF00266252. [DOI] [PubMed] [Google Scholar]
  10. Mahan M. J., Roth J. R. recB and recC genes of Salmonella typhimurium. J Bacteriol. 1989 Jan;171(1):612–615. doi: 10.1128/jb.171.1.612-615.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Poteete A. R., Fenton A. C. DNA-binding properties of the Erf protein of bacteriophage P22. J Mol Biol. 1983 Jan 15;163(2):257–275. doi: 10.1016/0022-2836(83)90006-2. [DOI] [PubMed] [Google Scholar]
  12. Poteete A. R., Fenton A. C., Murphy K. C. Modulation of Escherichia coli RecBCD activity by the bacteriophage lambda Gam and P22 Abc functions. J Bacteriol. 1988 May;170(5):2012–2021. doi: 10.1128/jb.170.5.2012-2021.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rudd K. E., Menzel R. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc Natl Acad Sci U S A. 1987 Jan;84(2):517–521. doi: 10.1073/pnas.84.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sawitzke J. A., Stahl F. W. Phage lambda has an analog of Escherichia coli recO, recR and recF genes. Genetics. 1992 Jan;130(1):7–16. doi: 10.1093/genetics/130.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Susskind M. M., Botstein D. Molecular genetics of bacteriophage P22. Microbiol Rev. 1978 Jun;42(2):385–413. doi: 10.1128/mr.42.2.385-413.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  17. Weaver S., Levine M. Recombinational circularization of Salmonella phage P22 DNA. Virology. 1977 Jan;76(1):29–38. doi: 10.1016/0042-6822(77)90278-1. [DOI] [PubMed] [Google Scholar]
  18. Yamagami H., Yamamoto N. Contribution of the bacterial recombination function to replication of bacteriophage P2. J Mol Biol. 1970 Oct 28;53(2):281–285. doi: 10.1016/0022-2836(70)90300-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES