Abstract
Pyocin AP41 degrades the chromosomal DNA in sensitive strains of Pseudomonas aeruginosa but has little effect on RNA, protein, and lipid syntheses. In vitro experiments showed that the carboxyl-terminal part of the large subunit of pyocin AP41 carries an inherent DNase that is responsible for its killing action.
Full text
PDF![912](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9419/196246/798baa8cc9bf/jbacter00045-0346.png)
![913](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9419/196246/d5fc56355874/jbacter00045-0347.png)
![914](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9419/196246/0f9303c24da1/jbacter00045-0348.png)
![915](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9419/196246/9f818e636967/jbacter00045-0349.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cole S. T., Saint-Joanis B., Pugsley A. P. Molecular characterisation of the colicin E2 operon and identification of its products. Mol Gen Genet. 1985;198(3):465–472. doi: 10.1007/BF00332940. [DOI] [PubMed] [Google Scholar]
- Holloway B. W., Rossiter H., Burgess D., Dodge J. Aeruginocin tolerant mutants of Pseudomonas aeruginosa. Genet Res. 1973 Dec;22(3):239–253. doi: 10.1017/s0016672300013069. [DOI] [PubMed] [Google Scholar]
- Lau P. C., Rowsome R. W., Zuker M., Visentin L. P. Comparative nucleotide sequences encoding the immunity proteins and the carboxyl-terminal peptides of colicins E2 and E3. Nucleic Acids Res. 1984 Nov 26;12(22):8733–8745. doi: 10.1093/nar/12.22.8733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obinata M., Mizuno D. Mechanism of colicin E2-induced DNA degradation in Escherichia coli. Biochim Biophys Acta. 1970 Feb 18;199(2):330–339. doi: 10.1016/0005-2787(70)90076-6. [DOI] [PubMed] [Google Scholar]
- Okawa I., Maruo B., Kageyama M. Preferential inhibition of lipid synthesis by the bacteriocin pyocin S2. J Biochem. 1975 Jul;78(1):213–223. [PubMed] [Google Scholar]
- Pugsley A. P. Autoinduced synthesis of colicin E2. Mol Gen Genet. 1983;190(3):379–383. doi: 10.1007/BF00331062. [DOI] [PubMed] [Google Scholar]
- Ringrose P. Sedimentation analysis of DNA degradation products resulting from the action of colicin E2 on Escherichia coli. Biochim Biophys Acta. 1970 Aug 8;213(2):320–334. doi: 10.1016/0005-2787(70)90040-7. [DOI] [PubMed] [Google Scholar]
- Sano Y., Kageyama M. Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. J Bacteriol. 1984 May;158(2):562–570. doi: 10.1128/jb.158.2.562-570.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sano Y., Kageyama M. Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol. 1981 May;146(2):733–739. doi: 10.1128/jb.146.2.733-739.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaller K., Nomura M. Colicin E2 is DNA endonuclease. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3989–3993. doi: 10.1073/pnas.73.11.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto H., Nishida K. I., Beppu T., Arima K. Tryptic digestion of colicin E2 and its active fragment. J Biochem. 1978 Mar;83(3):827–834. doi: 10.1093/oxfordjournals.jbchem.a131979. [DOI] [PubMed] [Google Scholar]