Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Aug;176(15):4742–4749. doi: 10.1128/jb.176.15.4742-4749.1994

Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction.

T Malvar 1, C Gawron-Burke 1, J A Baum 1
PMCID: PMC196297  PMID: 8045905

Abstract

The Bacillus thuringiensis CryIIIA insecticidal crystal protein (ICP) is a vegetatively expressed protein that is toxic to coleopteran insect larvae. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the asporogenous B. thuringiensis subsp. morrisoni strain EG1351, which harbors the native cryIIIA-encoding 88-MDa plasmid, showed a 2.5-fold overproduction of the CryIIIA protein compared with that of an isogenic wild-type strain. Further studies showed that neither CryIIIA protein synthesis nor CryIIIA protein processing was affected in strain EG1351 during vegetative growth. In an attempt to characterize the EG1351 mutation by complementation of function, the hknA gene was identified and cloned from a B. thuringiensis cosmid library. Primer extension analysis of hknA mRNA in wild-type B. thuringiensis demonstrated that the hknA gene is transcribed during vegetative growth from a sigma A-like promoter. Multiple copies of either the hknA gene or the Bacillus subtilis kinA (spoIIJ) gene were shown to bypass the sporulation defect in strain EG1351 as well as a spo0F mutation in B. thuringiensis EG1634. Additional studies showed that the hknA gene was not defective in strain EG1351. The results of this study suggest that hknA encodes a novel histidine protein kinase involved in B. thuringiensis sporulation. We also propose that the CryIIIA-overproducing phenotype of strain EG1351 is most likely due to a defect in the phosphorylation of Spo0A and confirm that CryIIIA production is not dependent on sporulation.

Full text

PDF
4742

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. F., Brown K. L., Whiteley H. R. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J Bacteriol. 1991 Jun;173(12):3846–3854. doi: 10.1128/jb.173.12.3846-3854.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agaisse H., Lereclus D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol. 1994 Aug;176(15):4734–4741. doi: 10.1128/jb.176.15.4734-4741.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antoniewski C., Savelli B., Stragier P. The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J Bacteriol. 1990 Jan;172(1):86–93. doi: 10.1128/jb.172.1.86-93.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum J. A., Coyle D. M., Gilbert M. P., Jany C. S., Gawron-Burke C. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol. 1990 Nov;56(11):3420–3428. doi: 10.1128/aem.56.11.3420-3428.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum J. A. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol. 1994 May;176(10):2835–2845. doi: 10.1128/jb.176.10.2835-2845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown K. L., Whiteley H. R. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4166–4170. doi: 10.1073/pnas.85.12.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donovan W. P., Gonzalez J. M., Jr, Gilbert M. P., Dankocsik C. Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. Mol Gen Genet. 1988 Nov;214(3):365–372. doi: 10.1007/BF00330468. [DOI] [PubMed] [Google Scholar]
  8. Donovan W. P., Rupar M. J., Slaney A. C., Malvar T., Gawron-Burke M. C., Johnson T. B. Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleoptera species. Appl Environ Microbiol. 1992 Dec;58(12):3921–3927. doi: 10.1128/aem.58.12.3921-3927.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gawron-Burke C., Baum J. A. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet Eng (N Y) 1991;13:237–263. doi: 10.1007/978-1-4615-3760-1_11. [DOI] [PubMed] [Google Scholar]
  10. Grossman A. D. Integration of developmental signals and the initiation of sporulation in B. subtilis. Cell. 1991 Apr 5;65(1):5–8. doi: 10.1016/0092-8674(91)90353-z. [DOI] [PubMed] [Google Scholar]
  11. Hoch J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol. 1993;47:441–465. doi: 10.1146/annurev.mi.47.100193.002301. [DOI] [PubMed] [Google Scholar]
  12. Kronstad J. W., Whiteley H. R. Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene. 1986;43(1-2):29–40. doi: 10.1016/0378-1119(86)90005-3. [DOI] [PubMed] [Google Scholar]
  13. Lecadet M. M., Lescourret M., Klier A. Characterization of an intracellular protease isolated from Bacillus thuringiensis sporulating cells and able to modify homologous RNA polymerase. Eur J Biochem. 1977 Oct 3;79(2):329–338. doi: 10.1111/j.1432-1033.1977.tb11813.x. [DOI] [PubMed] [Google Scholar]
  14. Li E., Yousten A. A. Metalloprotease from Bacillus thuringiensis. Appl Microbiol. 1975 Sep;30(3):354–361. doi: 10.1128/am.30.3.354-361.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malvar T., Baum J. A. Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J Bacteriol. 1994 Aug;176(15):4750–4753. doi: 10.1128/jb.176.15.4750-4753.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McMaster G. K., Carmichael G. G. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. doi: 10.1073/pnas.74.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mettus A. M., Macaluso A. Expression of Bacillus thuringiensis delta-endotoxin genes during vegetative growth. Appl Environ Microbiol. 1990 Apr;56(4):1128–1134. doi: 10.1128/aem.56.4.1128-1134.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mueller J. P., Sonenshein A. L. Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. J Bacteriol. 1992 Jul;174(13):4374–4383. doi: 10.1128/jb.174.13.4374-4383.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perego M., Cole S. P., Burbulys D., Trach K., Hoch J. A. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J Bacteriol. 1989 Nov;171(11):6187–6196. doi: 10.1128/jb.171.11.6187-6196.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rupar M. J., Donovan W. P., Groat R. G., Slaney A. C., Mattison J. W., Johnson T. B., Charles J. F., Dumanoir V. C., de Barjac H. Two novel strains of Bacillus thuringiensis toxic to coleopterans. Appl Environ Microbiol. 1991 Nov;57(11):3337–3344. doi: 10.1128/aem.57.11.3337-3344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sekar V., Thompson D. V., Maroney M. J., Bookland R. G., Adang M. J. Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7036–7040. doi: 10.1073/pnas.84.20.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith I., Dubnau E., Predich M., Bai U., Rudner R. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie. 1992 Jul-Aug;74(7-8):669–678. doi: 10.1016/0300-9084(92)90139-6. [DOI] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trach K. A., Chapman J. W., Piggot P. J., Hoch J. A. Deduced product of the stage 0 sporulation gene spo0F shares homology with the Spo0A, OmpR, and SfrA proteins. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7260–7264. doi: 10.1073/pnas.82.21.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trach K. A., Hoch J. A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol. 1993 Apr;8(1):69–79. doi: 10.1111/j.1365-2958.1993.tb01204.x. [DOI] [PubMed] [Google Scholar]
  26. Wang L. M., Weber D. K., Johnson T., Sakaguchi A. Y. Supercoil sequencing using unpurified templates produced by rapid boiling. Biotechniques. 1988 Oct;6(9):839, 841-3. [PubMed] [Google Scholar]
  27. Zuber P., Healy J. M., Losick R. Effects of plasmid propagation of a sporulation promoter on promoter utilization and sporulation in Bacillus subtilis. J Bacteriol. 1987 Feb;169(2):461–469. doi: 10.1128/jb.169.2.461-469.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Souza M. T., Lecadet M. M., Lereclus D. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J Bacteriol. 1993 May;175(10):2952–2960. doi: 10.1128/jb.175.10.2952-2960.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES