Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Aug;176(15):4766–4769. doi: 10.1128/jb.176.15.4766-4769.1994

Identification of a single amino acid substitution in the diphtheria toxin A chain of CRM 228 responsible for the loss of enzymatic activity.

V G Johnson 1, P J Nicholls 1
PMCID: PMC196302  PMID: 8045910

Abstract

CRM 228 (T. Uchida, A. M. Pappenheimer, and R. Greany, J. Biol. Chem. 248:3838-3844, 1973), a mutant form of diphtheria toxin which completely lacks ADP-ribosyltransferase activity, contains five amino acid substitutions. The two amino acid changes that fall within the A chain of the toxin (G79D and E162K) were separately analyzed by substituting a variety of other amino acids at these sites. The substitution at position 79 (G79D) singularly appears to account for the loss of enzymatic activity found in CRM 228.

Full text

PDF
4766

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Pichichero M. E., Insel R. A. Immunogens consisting of oligosaccharides from the capsule of Haemophilus influenzae type b coupled to diphtheria toxoid or the toxin protein CRM197. J Clin Invest. 1985 Jul;76(1):52–59. doi: 10.1172/JCI111976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashkenazi A., Presta L. G., Marsters S. A., Camerato T. R., Rosenthal K. A., Fendly B. M., Capon D. J. Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7150–7154. doi: 10.1073/pnas.87.18.7150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breitman M. L., Rombola H., Maxwell I. H., Klintworth G. K., Bernstein A. Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Mol Cell Biol. 1990 Feb;10(2):474–479. doi: 10.1128/mcb.10.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll S. F., Collier R. J. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3307–3311. doi: 10.1073/pnas.81.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choe S., Bennett M. J., Fujii G., Curmi P. M., Kantardjieff K. A., Collier R. J., Eisenberg D. The crystal structure of diphtheria toxin. Nature. 1992 May 21;357(6375):216–222. doi: 10.1038/357216a0. [DOI] [PubMed] [Google Scholar]
  6. Colombatti M., Johnson V. G., Skopicki H. A., Fendley B., Lewis M. S., Youle R. J. Identification and characterization of a monoclonal antibody recognizing a galactose-binding domain of the toxin ricin. J Immunol. 1987 May 15;138(10):3339–3344. [PubMed] [Google Scholar]
  7. Dell'Arciprete L., Colombatti M., Rappuoli R., Tridente G. A C terminus cysteine of diphtheria toxin B chain involved in immunotoxin cell penetration and cytotoxicity. J Immunol. 1988 Apr 1;140(7):2466–2471. [PubMed] [Google Scholar]
  8. Giannini G., Rappuoli R., Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984 May 25;12(10):4063–4069. doi: 10.1093/nar/12.10.4063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenfield L., Bjorn M. J., Horn G., Fong D., Buck G. A., Collier R. J., Kaplan D. A. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6853–6857. doi: 10.1073/pnas.80.22.6853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenfield L., Johnson V. G., Youle R. J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science. 1987 Oct 23;238(4826):536–539. doi: 10.1126/science.3498987. [DOI] [PubMed] [Google Scholar]
  11. Honjo T., Nishizuka Y., Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem. 1968 Jun 25;243(12):3553–3555. [PubMed] [Google Scholar]
  12. Hu V. W., Holmes R. K. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Biochim Biophys Acta. 1987 Aug 7;902(1):24–30. doi: 10.1016/0005-2736(87)90132-5. [DOI] [PubMed] [Google Scholar]
  13. Johnson V. G., Nicholls P. J., Habig W. H., Youle R. J. The role of proline 345 in diphtheria toxin translocation. J Biol Chem. 1993 Feb 15;268(5):3514–3519. [PubMed] [Google Scholar]
  14. Johnson V. G., Nicholls P. J. Histidine 21 does not play a major role in diphtheria toxin catalysis. J Biol Chem. 1994 Feb 11;269(6):4349–4354. [PubMed] [Google Scholar]
  15. Johnson V. G., Wilson D., Greenfield L., Youle R. J. The role of the diphtheria toxin receptor in cytosol translocation. J Biol Chem. 1988 Jan 25;263(3):1295–1300. [PubMed] [Google Scholar]
  16. Johnson V. G., Youle R. J. A point mutation of proline 308 in diphtheria toxin B chain inhibits membrane translocation of toxin conjugates. J Biol Chem. 1989 Oct 25;264(30):17739–17744. [PubMed] [Google Scholar]
  17. Kaczorek M., Delpeyroux F., Chenciner N., Streeck R. E., Murphy J. R., Boquet P., Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983 Aug 26;221(4613):855–858. doi: 10.1126/science.6348945. [DOI] [PubMed] [Google Scholar]
  18. Killeen K. P., Escuyer V., Mekalanos J. J., Collier R. J. Reversion of recombinant toxoids: mutations in diphtheria toxin that partially compensate for active-site deletions. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6207–6209. doi: 10.1073/pnas.89.13.6207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laird W., Groman N. Isolation and characterization of tox mutants of corynebacteriophage beta. J Virol. 1976 Jul;19(1):220–227. doi: 10.1128/jvi.19.1.220-227.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mekada E., Uchida T. Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J Biol Chem. 1985 Oct 5;260(22):12148–12153. [PubMed] [Google Scholar]
  21. Neville D. M., Jr, Srinivasachar K., Stone R., Scharff J. Enhancement of immunotoxin efficacy by acid-cleavable cross-linking agents utilizing diphtheria toxin and toxin mutants. J Biol Chem. 1989 Sep 5;264(25):14653–14661. [PubMed] [Google Scholar]
  22. Nicholls P. J., Johnson V. G., Andrew S. M., Hoogenboom H. R., Raus J. C., Youle R. J. Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J Biol Chem. 1993 Mar 5;268(7):5302–5308. [PubMed] [Google Scholar]
  23. Nicholls P. J., Youle R. J. The structure of diphtheria toxin as a guide to rational design. Targeted Diagn Ther. 1992;7:339–363. [PubMed] [Google Scholar]
  24. Papini E., Colonna R., Schiavo G., Cusinato F., Tomasi M., Rappuoli R., Montecucco C. Diphtheria toxin and its mutant crm 197 differ in their interaction with lipids. FEBS Lett. 1987 May 4;215(1):73–78. doi: 10.1016/0014-5793(87)80116-3. [DOI] [PubMed] [Google Scholar]
  25. Papini E., Santucci A., Schiavo G., Domenighini M., Neri P., Rappuoli R., Montecucco C. Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. J Biol Chem. 1991 Feb 5;266(4):2494–2498. [PubMed] [Google Scholar]
  26. Papini E., Schiavo G., Sandoná D., Rappuoli R., Montecucco C. Histidine 21 is at the NAD+ binding site of diphtheria toxin. J Biol Chem. 1989 Jul 25;264(21):12385–12388. [PubMed] [Google Scholar]
  27. Tweten R. K., Barbieri J. T., Collier R. J. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J Biol Chem. 1985 Sep 5;260(19):10392–10394. [PubMed] [Google Scholar]
  28. Uchida T., Gill D. M., Pappenheimer A. M., Jr Mutation in the structural gene for diphtheria toxin carried by temperate phage . Nat New Biol. 1971 Sep 1;233(35):8–11. doi: 10.1038/newbio233008a0. [DOI] [PubMed] [Google Scholar]
  29. Uchida T., Pappenheimer A. M., Jr, Greany R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem. 1973 Jun 10;248(11):3838–3844. [PubMed] [Google Scholar]
  30. Williams D. P., Wen Z., Watson R. S., Boyd J., Strom T. B., Murphy J. R. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem. 1990 Nov 25;265(33):20673–20677. [PubMed] [Google Scholar]
  31. Wilson B. A., Reich K. A., Weinstein B. R., Collier R. J. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry. 1990 Sep 18;29(37):8643–8651. doi: 10.1021/bi00489a021. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES