Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Aug;176(16):4803–4808. doi: 10.1128/jb.176.16.4803-4808.1994

Loci of Mycobacterium avium ser2 gene cluster and their functions.

J A Mills 1, M R McNeil 1, J T Belisle 1, W R Jacobs Jr 1, P J Brennan 1
PMCID: PMC196313  PMID: 8050992

Abstract

The highly antigenic glycopeptidolipids present on the surface of members of the Mycobacterium avium complex serve to distinguish these bacteria from all others and to define the various serovars that compose this complex. Previously, the genes responsible for the biosynthesis of the disaccharide hapten [2,3-di-O-methyl-alpha-L-fucopyranosyl-(1-->3)-alpha-L-rhamnopyranose] of serovar 2 of the M. avium complex were isolated, localized to a contiguous 22- to 27-kb fragment of the M. avium genome, and designated the ser2 gene cluster (J. T. Belisle, L. Pascopella, J. M. Inamine, P. J. Brennan, and W. R. Jacobs, Jr., J. Bacteriol. 173:6991-6997, 1991). In the present study, transposon saturation mutagenesis was used to map the specific genetic loci within the ser2 gene cluster required for expression of this disaccharide. Four essential loci, termed ser2A, -B, -C, and -D, constituting a total of 5.7 kb within the ser2 gene cluster, were defined. The ser2B and ser2D loci encode the methyltransferases required to methylate the fucose at the 3 and 2 positions, respectively. The rhamnosyltransferase was encoded by ser2A, whereas either ser2C or ser2D encoded the fucosyltransferase. The ser2C and ser2D loci are also apparently involved in the de novo synthesis of fucose. Isolation of the truncated versions of the hapten induced by the transposon insertions provides genetic evidence that the glycopeptidolipids of M. avium serovar 2 are synthesized by an initial transfer of the rhamnose unit to the peptide core followed by fucose and finally O methylation of the fucosyl unit.

Full text

PDF
4803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspinall G. O., Khare N. K., Sood R. K., Chatterjee D., Rivoire B., Brennan P. J. Structure of the glycopeptidolipid antigen of serovar 20 of the Mycobacterium avium serocomplex, synthesis of allyl glycosides of the outer di- and tri-saccharide units of the antigens of serovars 14 and 20, and serology of the derived neoglycoproteins. Carbohydr Res. 1991 Sep 2;216:357–373. doi: 10.1016/0008-6215(92)84173-p. [DOI] [PubMed] [Google Scholar]
  2. Auerswald E. A., Ludwig G., Schaller H. Structural analysis of Tn5. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):107–113. doi: 10.1101/sqb.1981.045.01.019. [DOI] [PubMed] [Google Scholar]
  3. Baulard A., Jourdan C., Mercenier A., Locht C. Rapid mycobacterial plasmid analysis by electroduction between Mycobacterium spp. and Escherichia coli. Nucleic Acids Res. 1992 Aug 11;20(15):4105–4105. doi: 10.1093/nar/20.15.4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belisle J. T., Brennan P. J. Chemical basis of rough and smooth variation in mycobacteria. J Bacteriol. 1989 Jun;171(6):3465–3470. doi: 10.1128/jb.171.6.3465-3470.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belisle J. T., Klaczkiewicz K., Brennan P. J., Jacobs W. R., Jr, Inamine J. M. Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem. 1993 May 15;268(14):10517–10523. [PubMed] [Google Scholar]
  6. Belisle J. T., McNeil M. R., Chatterjee D., Inamine J. M., Brennan P. J. Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium. J Biol Chem. 1993 May 15;268(14):10510–10516. [PubMed] [Google Scholar]
  7. Belisle J. T., Pascopella L., Inamine J. M., Brennan P. J., Jacobs W. R., Jr Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium. J Bacteriol. 1991 Nov;173(21):6991–6997. doi: 10.1128/jb.173.21.6991-6997.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  9. Brennan P. J., Goren M. B. Structural studies on the type-specific antigens and lipids of the mycobacterium avium. Mycobacterium intracellulare. Mycobacterium scrofulaceum serocomplex. Mycobacterium intracellulare serotype 9. J Biol Chem. 1979 May 25;254(10):4205–4211. [PubMed] [Google Scholar]
  10. Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem. 1967 Jul 10;242(13):3046–3056. [PubMed] [Google Scholar]
  11. Camphausen R. T., Jones R. L., Brennan P. J. Structure and relevance of the oligosaccharide hapten of Mycobacterium avium serotype 2. J Bacteriol. 1986 Nov;168(2):660–667. doi: 10.1128/jb.168.2.660-667.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daffe M., Laneelle M. A., Puzo G. Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis. Biochim Biophys Acta. 1983 May 16;751(3):439–443. doi: 10.1016/0005-2760(83)90304-1. [DOI] [PubMed] [Google Scholar]
  13. Daffe M., McNeil M., Brennan P. J. Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res. 1993 Nov 3;249(2):383–398. doi: 10.1016/0008-6215(93)84102-c. [DOI] [PubMed] [Google Scholar]
  14. Davidson L. A., Takayama K. Isoniazid inhibition of the synthesis of monounsaturated long-chain fatty acids in Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1979 Jul;16(1):104–105. doi: 10.1128/aac.16.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobs W. R., Barrett J. F., Clark-Curtiss J. E., Curtiss R., 3rd In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium, Streptococcus mutans, and mycobacterial genomic libraries. Infect Immun. 1986 Apr;52(1):101–109. doi: 10.1128/iai.52.1.101-109.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobs W. R., Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Genetic systems for mycobacteria. Methods Enzymol. 1991;204:537–555. doi: 10.1016/0076-6879(91)04027-l. [DOI] [PubMed] [Google Scholar]
  18. Jacobs W. R., Jr, Tuckman M., Bloom B. R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature. 1987 Jun 11;327(6122):532–535. doi: 10.1038/327532a0. [DOI] [PubMed] [Google Scholar]
  19. McNeil M. R., Brennan P. J. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991 May;142(4):451–463. doi: 10.1016/0923-2508(91)90120-y. [DOI] [PubMed] [Google Scholar]
  20. McNeil M., Chatterjee D., Hunter S. W., Brennan P. J. Mycobacterial glycolipids: isolation, structures, antigenicity, and synthesis of neoantigens. Methods Enzymol. 1989;179:215–242. doi: 10.1016/0076-6879(89)79123-0. [DOI] [PubMed] [Google Scholar]
  21. McNeil M., Daffe M., Brennan P. J. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem. 1990 Oct 25;265(30):18200–18206. [PubMed] [Google Scholar]
  22. Rivoire B., Ranchoff B. J., Chatterjee D., Gaylord H., Tsang A. Y., Kolk A. H., Aspinall G. O., Brennan P. J. Generation of monoclonal antibodies to the specific sugar epitopes of Mycobacterium avium complex serovars. Infect Immun. 1989 Oct;57(10):3147–3158. doi: 10.1128/iai.57.10.3147-3158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shibaev V. N. Biosynthesis of bacterial polysaccharide chains composed of repeating units. Adv Carbohydr Chem Biochem. 1986;44:277–339. doi: 10.1016/s0065-2318(08)60080-3. [DOI] [PubMed] [Google Scholar]
  24. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R., Jr Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6987–6991. doi: 10.1073/pnas.85.18.6987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  26. Takayama K., Kilburn J. O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989 Sep;33(9):1493–1499. doi: 10.1128/aac.33.9.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wayne L. G., Sramek H. A. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992 Jan;5(1):1–25. doi: 10.1128/cmr.5.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Bruijn F. J., Lupski J. R. The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids--a review. Gene. 1984 Feb;27(2):131–149. doi: 10.1016/0378-1119(84)90135-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES