Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Aug;176(16):5001–5004. doi: 10.1128/jb.176.16.5001-5004.1994

A change in a single gene of Salmonella typhimurium can dramatically change its buoyant density.

W W Baldwin 1, M A Kirkish 1, A L Koch 1
PMCID: PMC196338  PMID: 8051013

Abstract

The growth rates and buoyant densities of a Salmonella typhimurium mutant, TL126 (proB74A+), with enhanced osmotolerance caused by proline overproduction were measured and compared with the growth rates and buoyant densities of an isogenic (wild-type) strain, TL128 (proB+ A+), with normal control of proline production. Growth rates were determined in a rich medium (Luria broth) with added NaCl to produce various osmotic strengths ranging from 300 to 2,000 mosM. At low concentrations of NaCl, there was little variation in doubling times between the two strains. However, as the osmotic strength of the medium approached and exceeded 1,300 mosM, the doubling times of TL126 (osmotolerant) were 1.5 to 2 times faster than those of TL128 (wild type), confirming the osmotolerance of TL126. Buoyant densities were determined by equilibrium sedimentation in a Percoll gradient of osmotic strength equal to that of the growth medium. The osmolarity of the Percoll gradient was adjusted by the addition of NaCl. At low osmolarities (300 to 500 mosM), the buoyant density of TL126 (osmotolerant) was slightly but consistently lower than that of TL128 (wild type). As the osmotic strength was increased, the buoyant density of TL126 (osmotolerant) increased in proportion to the osmotic strength. In contrast, the buoyant density of strain TL128 (wild type) did not increase as much. At high osmolarities (1,600 to 2,000 mosM), the buoyant density of TL126 (osmotolerant) was consistently higher than that of TL128 (wild type). These results suggest that the intracellular accumulation of proline by TL126, the osmotolerant strain, increases both the growth rates and buoyant densities at osmolarities of 1,300 mosM and above.

Full text

PDF
5001

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin W. W., Bankston P. W. Measurement of live bacteria by Nomarski interference microscopy and stereologic methods as tested with macroscopic rod-shaped models. Appl Environ Microbiol. 1988 Jan;54(1):105–109. doi: 10.1128/aem.54.1.105-109.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin W. W., Kubitschek H. E. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli. J Bacteriol. 1984 Jul;159(1):393–394. doi: 10.1128/jb.159.1.393-394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldwin W. W., Sheu M. J., Bankston P. W., Woldringh C. L. Changes in buoyant density and cell size of Escherichia coli in response to osmotic shocks. J Bacteriol. 1988 Jan;170(1):452–455. doi: 10.1128/jb.170.1.452-455.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cayley S., Lewis B. A., Guttman H. J., Record M. T., Jr Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol. 1991 Nov 20;222(2):281–300. doi: 10.1016/0022-2836(91)90212-o. [DOI] [PubMed] [Google Scholar]
  5. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  7. Csonka L. N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet. 1981;182(1):82–86. doi: 10.1007/BF00422771. [DOI] [PubMed] [Google Scholar]
  8. Csonka L. N. Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. J Bacteriol. 1988 May;170(5):2374–2378. doi: 10.1128/jb.170.5.2374-2378.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein W., Schultz S. G. Cation transport in Escherichia coli. VI. K exchange. J Gen Physiol. 1966 Jan;49(3):469–481. doi: 10.1085/jgp.49.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koch A. L. Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol. 1984 Sep;159(3):919–924. doi: 10.1128/jb.159.3.919-924.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kubitschek H. E., Baldwin W. W., Graetzer R. Buoyant density constancy during the cell cycle of Escherichia coli. J Bacteriol. 1983 Sep;155(3):1027–1032. doi: 10.1128/jb.155.3.1027-1032.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  13. Poole R. K. Fluctuations in buoyant density during the cell cycle of Escherichia coli K12: significance for the preparation of synchronous cultures by age selection. J Gen Microbiol. 1977 Jan;98(1):177–186. doi: 10.1099/00221287-98-1-177. [DOI] [PubMed] [Google Scholar]
  14. Tempest D. W., Meers J. L. The influence of NaCl concentration of the medium on the potassium content of Aerobacter aerogenes and on the inter-relationships between potassium, magnesium and ribonucleic acid in the growing bacteria. J Gen Microbiol. 1968 Dec;54(3):319–325. doi: 10.1099/00221287-54-3-319. [DOI] [PubMed] [Google Scholar]
  15. Woldringh C. L., Binnerts J. S., Mans A. Variation in Escherichia coli buoyant density measured in Percoll gradients. J Bacteriol. 1981 Oct;148(1):58–63. doi: 10.1128/jb.148.1.58-63.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES