Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Aug;176(16):5151–5155. doi: 10.1128/jb.176.16.5151-5155.1994

Nucleotide sequence of the Wolinella succinogenes flagellin, which contains in the antigenic domain two conserved regions also present in Campylobacter spp. and Helicobacter pylori.

S C Schuster 1, M Bauer 1, J Kellermann 1, F Lottspeich 1, E Baeuerlein 1
PMCID: PMC196359  PMID: 8051032

Abstract

Wolinella succinogenes possesses one polar flagellum, which shows a characteristic surface pattern of parallel lines along the axis of the filament in electron microscopic images. We determined the gene sequence of the Wolinella flagellin, which is, as in most other bacteria, the only structural component of the filament. Sequence comparison with other members of the Proteobacteria revealed two highly conserved regions in the central part of the flagellin molecule among Campylobacter spp. and Helicobacter pylori, an area that had previously been described as highly variable. Similar surface patterns are found in related polarly flagellated bacteria, but not in Escherichia coli and Bacillus subtilis, which also lack these conserved regions.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa S. I., Dean G. E., Jones C. J., Macnab R. M., Yamaguchi S. Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol. 1985 Mar;161(3):836–849. doi: 10.1128/jb.161.3.836-849.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brass J. M., Manson M. D. Reconstitution of maltose chemotaxis in Escherichia coli by addition of maltose-binding protein to calcium-treated cells of maltose regulon mutants. J Bacteriol. 1984 Mar;157(3):881–890. doi: 10.1128/jb.157.3.881-890.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brock F. M., Murray R. G. The ultrastructure and ATPase nature of polar membrane in Campylobacter jejuni. Can J Microbiol. 1988 May;34(5):594–604. doi: 10.1139/m88-099. [DOI] [PubMed] [Google Scholar]
  4. Eckerskorn C., Mewes W., Goretzki H., Lottspeich F. A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem. 1988 Oct 1;176(3):509–519. doi: 10.1111/j.1432-1033.1988.tb14308.x. [DOI] [PubMed] [Google Scholar]
  5. Engelhardt H., Schuster S. C., Baeuerlein E. An archimedian spiral: the basal disk of the Wolinella flagellar motor. Science. 1993 Nov 12;262(5136):1046–1048. doi: 10.1126/science.8235620. [DOI] [PubMed] [Google Scholar]
  6. Guerry P., Alm R. A., Power M. E., Logan S. M., Trust T. J. Role of two flagellin genes in Campylobacter motility. J Bacteriol. 1991 Aug;173(15):4757–4764. doi: 10.1128/jb.173.15.4757-4764.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  8. Joys T. M., Rankis V. The primary structure of the phase-1 flagellar protein of Salmonella typhimurium. I. The tryptic peptides. J Biol Chem. 1972 Aug 25;247(16):5180–5193. [PubMed] [Google Scholar]
  9. Joys T. M. The flagellar filament protein. Can J Microbiol. 1988 Apr;34(4):452–458. doi: 10.1139/m88-078. [DOI] [PubMed] [Google Scholar]
  10. Kanto S., Okino H., Aizawa S., Yamaguchi S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J Mol Biol. 1991 Jun 5;219(3):471–480. doi: 10.1016/0022-2836(91)90187-b. [DOI] [PubMed] [Google Scholar]
  11. Khan S. Gene to ultrastructure: the case of the flagellar basal body. J Bacteriol. 1993 Apr;175(8):2169–2174. doi: 10.1128/jb.175.8.2169-2174.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kostrzynska M., Betts J. D., Austin J. W., Trust T. J. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol. 1991 Feb;173(3):937–946. doi: 10.1128/jb.173.3.937-946.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kupper J., Wildhaber I., Gao Z., Baeuerlein E. Basal-body-associated disks are additional structural elements of the flagellar apparatus isolated from Wolinella succinogenes. J Bacteriol. 1989 May;171(5):2803–2810. doi: 10.1128/jb.171.5.2803-2810.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lane D. J., Harrison A. P., Jr, Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol. 1992 Jan;174(1):269–278. doi: 10.1128/jb.174.1.269-278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lawn A. M., Orskov I., Orskov F. Morphological distinction between different H serotypes of Escherichia coli. J Gen Microbiol. 1977 Jul;101(1):111–119. doi: 10.1099/00221287-101-1-111. [DOI] [PubMed] [Google Scholar]
  16. Leying H., Suerbaum S., Geis G., Haas R. Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol. 1992 Oct;6(19):2863–2874. doi: 10.1111/j.1365-2958.1992.tb01466.x. [DOI] [PubMed] [Google Scholar]
  17. Logan S. M., Trust T. J., Guerry P. Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol. 1989 Jun;171(6):3031–3038. doi: 10.1128/jb.171.6.3031-3038.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Macnab R. M., DeRosier D. J. Bacterial flagellar structure and function. Can J Microbiol. 1988 Apr;34(4):442–451. doi: 10.1139/m88-077. [DOI] [PubMed] [Google Scholar]
  19. Morooka T., Umeda A., Amako K. Morphological differences in flagella in Campylobacter fetus subsp. intestinalis and C. fetus subsp. jejuni. Microbiol Immunol. 1983;27(8):655–662. doi: 10.1111/j.1348-0421.1983.tb00628.x. [DOI] [PubMed] [Google Scholar]
  20. Nuijten P. J., van Asten F. J., Gaastra W., van der Zeijst B. A. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem. 1990 Oct 15;265(29):17798–17804. [PubMed] [Google Scholar]
  21. Romaniuk P. J., Zoltowska B., Trust T. J., Lane D. J., Olsen G. J., Pace N. R., Stahl D. A. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol. 1987 May;169(5):2137–2141. doi: 10.1128/jb.169.5.2137-2141.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schoenhals G., Whitfield C. Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern. J Bacteriol. 1993 Sep;175(17):5395–5402. doi: 10.1128/jb.175.17.5395-5402.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schuster S. C., Baeuerlein E. Location of the basal disk and a ringlike cytoplasmic structure, two additional structures of the flagellar apparatus of Wolinella succinogenes. J Bacteriol. 1992 Jan;174(1):263–268. doi: 10.1128/jb.174.1.263-268.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trachtenberg S., DeRosier D. J. A molecular switch: subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments. J Mol Biol. 1991 Jul 5;220(1):67–77. doi: 10.1016/0022-2836(91)90381-f. [DOI] [PubMed] [Google Scholar]
  25. WOLIN M. J., WOLIN E. A., JACOBS N. J. Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol. 1961 Jun;81:911–917. doi: 10.1128/jb.81.6.911-917.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES