Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Sep;176(17):5218–5224. doi: 10.1128/jb.176.17.5218-5224.1994

Genetic and physiological studies of Bacillus subtilis sigma A mutants defective in promoter melting.

J C Rong 1, J D Helmann 1
PMCID: PMC196704  PMID: 8071196

Abstract

The Bacillus subtilis sigA gene encodes the primary sigma factor of RNA polymerase and is essential for cell growth. We have mutated conserved region 2.3 of the sigma A protein to substitute each of seven aromatic amino acids with alanine. Several of these aromatic amino acids are proposed to form a melting motif which facilitates the strand separation step of initiation. Holoenzymes containing mutant sigma factors recognize promoters, but some are defective for DNA melting in vitro. We have studied the ability of each mutant sigma factor to support cell growth by gene replacement and complementation. The two region 2.3 mutants least impaired in promoter melting in vitro (Y180A and Y184A) support cell growth in single copy, although the Y184A allele imparts a slow-growth phenotype at low temperatures. A strain expressing only the Y189A variant of the sigma A protein, known to be defective in DNA melting in vitro, grows very slowly and is altered in its pattern of protein synthesis. Only the wild-type and Y180A sigma A proteins efficiently complement a temperature-sensitive allele of sigA. Overexpression of three of the sigma A proteins defective for promoter melting in vitro (Y189A, W192A, and W193A) leads to a decrease in RNA synthesis and cell death. These results indicate that mutations which specifically impair DNA melting in vitro also impair sigma function in vivo and therefore support the hypothesis that sigma plays an essential role in both DNA melting and promoter recognition.

Full text

PDF
5218

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnosti D. N., Singer V. L., Chamberlin M. J. Characterization of heat shock in Bacillus subtilis. J Bacteriol. 1986 Dec;168(3):1243–1249. doi: 10.1128/jb.168.3.1243-1249.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckle M., Geiselmann J., Kolb A., Buc H. Protein-DNA cross-linking at the lac promoter. Nucleic Acids Res. 1991 Feb 25;19(4):833–840. doi: 10.1093/nar/19.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. Factor stimulating transcription by RNA polymerase. Nature. 1969 Jan 4;221(5175):43–46. doi: 10.1038/221043a0. [DOI] [PubMed] [Google Scholar]
  4. Chang B. Y., Doi R. H. Effects of amino acid substitutions in the promoter -10 binding region of the sigma A factor on growth of Bacillus subtilis. J Bacteriol. 1993 Apr;175(8):2470–2474. doi: 10.1128/jb.175.8.2470-2474.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen L., James L. P., Helmann J. D. Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol. 1993 Sep;175(17):5428–5437. doi: 10.1128/jb.175.17.5428-5437.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniels D., Zuber P., Losick R. Two amino acids in an RNA polymerase sigma factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8075–8079. doi: 10.1073/pnas.87.20.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dombroski A. J., Walter W. A., Record M. T., Jr, Siegele D. A., Gross C. A. Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell. 1992 Aug 7;70(3):501–512. doi: 10.1016/0092-8674(92)90174-b. [DOI] [PubMed] [Google Scholar]
  8. Duffy J. J., Geiduschek E. P. The virus-specified subunits of a modified B. subtilis RNA polymerase are determinants of DNA binding and RNA chain initiation. Cell. 1976 Aug;8(4):595–604. doi: 10.1016/0092-8674(76)90227-0. [DOI] [PubMed] [Google Scholar]
  9. Gardella T., Moyle H., Susskind M. M. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J Mol Biol. 1989 Apr 20;206(4):579–590. doi: 10.1016/0022-2836(89)90567-6. [DOI] [PubMed] [Google Scholar]
  10. Grandoni J. A., Zahler S. A., Calvo J. M. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol. 1992 May;174(10):3212–3219. doi: 10.1128/jb.174.10.3212-3219.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gross C. A., Grossman A. D., Liebke H., Walter W., Burgess R. R. Effects of the mutant sigma allele rpoD800 on the synthesis of specific macromolecular components of the Escherichia coli K12 cell. J Mol Biol. 1984 Jan 25;172(3):283–300. doi: 10.1016/s0022-2836(84)80027-3. [DOI] [PubMed] [Google Scholar]
  12. Haldenwang W. G., Losick R. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature. 1979 Nov 15;282(5736):256–260. doi: 10.1038/282256a0. [DOI] [PubMed] [Google Scholar]
  13. Harris J. D., Heilig J. S., Martinez I. I., Calendar R., Isaksson L. A. Temperature-sensitive Escherichia coli mutant producing a temperature-sensitive sigma subunit of DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6177–6181. doi: 10.1073/pnas.75.12.6177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helmann J. D., Chamberlin M. J. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. doi: 10.1146/annurev.bi.57.070188.004203. [DOI] [PubMed] [Google Scholar]
  15. Jaehning J. A., Wiggs J. L., Chamberlin M. J. Altered promoter selection by a novel form of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5470–5474. doi: 10.1073/pnas.76.11.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones C. H., Moran C. P., Jr Mutant sigma factor blocks transition between promoter binding and initiation of transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1958–1962. doi: 10.1073/pnas.89.5.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones C. H., Tatti K. M., Moran C. P., Jr Effects of amino acid substitutions in the -10 binding region of sigma E from Bacillus subtilis. J Bacteriol. 1992 Nov;174(21):6815–6821. doi: 10.1128/jb.174.21.6815-6821.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Juang Y. L., Helmann J. D. A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. J Mol Biol. 1994 Feb 4;235(5):1470–1488. doi: 10.1006/jmbi.1994.1102. [DOI] [PubMed] [Google Scholar]
  19. Keener J., Nomura M. Dominant lethal phenotype of a mutation in the -35 recognition region of Escherichia coli sigma 70. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1751–1755. doi: 10.1073/pnas.90.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Qi F. X., He X. S., Doi R. H. Localization of a new promoter, P5, in the sigA operon of Bacillus subtilis and its regulation in some spo mutant strains. J Bacteriol. 1991 Nov;173(21):7050–7054. doi: 10.1128/jb.173.21.7050-7054.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Renna M. C., Najimudin N., Winik L. R., Zahler S. A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993 Jun;175(12):3863–3875. doi: 10.1128/jb.175.12.3863-3875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ross W., Thompson J. F., Newlands J. T., Gourse R. L. E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990 Nov;9(11):3733–3742. doi: 10.1002/j.1460-2075.1990.tb07586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siegele D. A., Hu J. C., Walter W. A., Gross C. A. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol. 1989 Apr 20;206(4):591–603. doi: 10.1016/0022-2836(89)90568-8. [DOI] [PubMed] [Google Scholar]
  25. Simpson R. B. The molecular topography of RNA polymerase-promoter interaction. Cell. 1979 Oct;18(2):277–285. doi: 10.1016/0092-8674(79)90047-3. [DOI] [PubMed] [Google Scholar]
  26. Stragier P., Bonamy C., Karmazyn-Campelli C. Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell. 1988 Mar 11;52(5):697–704. doi: 10.1016/0092-8674(88)90407-2. [DOI] [PubMed] [Google Scholar]
  27. Tijan R., Pero J. Bacteriophage SP01 regulatory proteins directing late gene transcription in vitro. Nature. 1976 Aug 26;262(5571):753–757. doi: 10.1038/262753a0. [DOI] [PubMed] [Google Scholar]
  28. Waldburger C., Gardella T., Wong R., Susskind M. M. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol. 1990 Sep 20;215(2):267–276. doi: 10.1016/s0022-2836(05)80345-6. [DOI] [PubMed] [Google Scholar]
  29. Waldburger C., Susskind M. M. Probing the informational content of Escherichia coli sigma 70 region 2.3 by combinatorial cassette mutagenesis. J Mol Biol. 1994 Feb 4;235(5):1489–1500. doi: 10.1006/jmbi.1994.1103. [DOI] [PubMed] [Google Scholar]
  30. Zuber P., Healy J., Carter H. L., 3rd, Cutting S., Moran C. P., Jr, Losick R. Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol. 1989 Apr 20;206(4):605–614. doi: 10.1016/0022-2836(89)90569-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES