Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Sep;176(17):5341–5349. doi: 10.1128/jb.176.17.5341-5349.1994

Use of a phase variation-specific promoter of Myxococcus xanthus in a strategy for isolating a phase-locked mutant.

B E Laue 1, R E Gill 1
PMCID: PMC196719  PMID: 8071210

Abstract

The bacterium Myxococcus xanthus alternates between two colony types distinguished by colony morphology and pigmentation. Because the two phases are interconvertible, this phenomenon has been termed phase variation. In one phase, the colonies are bright yellow, rough, and swarming. In the alternate phase, the colonies are tan and mucoid with smooth edges. During exponential vegetative growth, the populations within a colony reach an equilibrium of approximately 99% yellow and 1% tan cells. Neither the biological function nor the genetic mechanism of phase variation is currently understood. To investigate phase variation, a yellow-phase-specific promoter was identified by Tn5lac mutagenesis. A tan-phase-locked mutant was isolated by a strategy, described in this study, which involved introducing a selectable marker expressed under phase-regulated expression. This was accomplished by a fusion of the cloned yellow-phase-specific promoter to a promoterless kanamycin resistance gene. The defect in the phase-locked mutant, given the designation var-683, caused the rate of switching from the tan to yellow phase to be reduced by at least 10(3)-fold below the wild-type rate of switching. This strain will provide a stable tan population for genetic and biological analysis. Evidence is presented for the existence of a transcriptional regulator which controls the expression of phase-regulated promoters.

Full text

PDF
5341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burchard R. P., Burchard A. C., Parish J. H. Pigmentation phenotype instability in Myxococcus xanthus. Can J Microbiol. 1977 Dec;23(12):1657–1662. doi: 10.1139/m77-238. [DOI] [PubMed] [Google Scholar]
  2. Burchard R. P., Dworkin M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J Bacteriol. 1966 Feb;91(2):535–545. doi: 10.1128/jb.91.2.535-545.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gill R. E., Bornemann M. C. Identification and characterization of the Myxococcus xanthus bsgA gene product. J Bacteriol. 1988 Nov;170(11):5289–5297. doi: 10.1128/jb.170.11.5289-5297.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gill R. E., Cull M. G., Fly S. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J Bacteriol. 1988 Nov;170(11):5279–5288. doi: 10.1128/jb.170.11.5279-5288.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hodgkin J., Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938–2942. doi: 10.1073/pnas.74.7.2938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Janssen G. R., Dworkin M. Cell-cell interactions in developmental lysis of Myxococcus xanthus. Dev Biol. 1985 Nov;112(1):194–202. doi: 10.1016/0012-1606(85)90133-2. [DOI] [PubMed] [Google Scholar]
  7. Kaiser D., Manoil C., Dworkin M. Myxobacteria: cell interactions, genetics, and development. Annu Rev Microbiol. 1979;33:595–639. doi: 10.1146/annurev.mi.33.100179.003115. [DOI] [PubMed] [Google Scholar]
  8. Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5952–5956. doi: 10.1073/pnas.76.11.5952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kroos L., Kaiser D. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5816–5820. doi: 10.1073/pnas.81.18.5816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuner J. M., Kaiser D. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc Natl Acad Sci U S A. 1981 Jan;78(1):425–429. doi: 10.1073/pnas.78.1.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rosenberg E., Keller K. H., Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol. 1977 Feb;129(2):770–777. doi: 10.1128/jb.129.2.770-777.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosner J. L. Formation, induction, and curing of bacteriophage P1 lysogens. Virology. 1972 Jun;48(3):679–689. doi: 10.1016/0042-6822(72)90152-3. [DOI] [PubMed] [Google Scholar]
  13. Shimkets L. J., Gill R. E., Kaiser D. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1406–1410. doi: 10.1073/pnas.80.5.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES