Abstract
A mutant of Paracoccus denitrificans, DP104, unable to grow anaerobically with nitrate as the terminal electron acceptor or aerobically with methanol as the electron donor and staining negatively in the dimethylphenylene diamine oxidation (Nadi) test, was isolated by transposon Tn5::phoA mutagenesis. P. denitrificans DP104 grown aerobically with succinate or choline had very low levels (2 to 3% of the wild-type levels) of spectroscopically detectable soluble c-type cytochromes. In contrast, membrane cytochromes of the a, b, and c types were present at 50% of the levels found in the wild type. The apo form of cytochrome c550, at an approximately 1:1 molar ratio with the holo form, was found in the periplasm of DP104. The TnphoA element was shown to be inserted immediately upstream of the translational start of hemA, the gene coding for 5-aminolevulinate synthase, which was sequenced. Low-level expression of this gene, driven off an incidental promoter provided by TnphoA-cointegrated suicide vector DNA, is the basis of the phenotype which could be complemented by the addition of 5-aminolevulinate to growth media. Disruption of the hemA gene generated a P. denitrificans strain auxotrophic for 5-aminolevulinate, establishing that there is no hemA-independent pathway of heme synthesis in this organism. The differential deficiency in periplasmic c-type cytochromes relative to membrane cytochromes in DP104 is suggested to arise from unequal competition for the restricted supply of heme which results from the effects of the transposon insertion.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alefounder P. R., Ferguson S. J. A periplasmic location for methanol dehydrogenase from Paracoccus denitrificans: implications for proton pumping by cytochrome aa3. Biochem Biophys Res Commun. 1981 Feb 12;98(3):778–784. doi: 10.1016/0006-291x(81)91179-7. [DOI] [PubMed] [Google Scholar]
- Auerswald E. A., Ludwig G., Schaller H. Structural analysis of Tn5. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):107–113. doi: 10.1101/sqb.1981.045.01.019. [DOI] [PubMed] [Google Scholar]
- Beckman D. L., Trawick D. R., Kranz R. G. Bacterial cytochromes c biogenesis. Genes Dev. 1992 Feb;6(2):268–283. doi: 10.1101/gad.6.2.268. [DOI] [PubMed] [Google Scholar]
- Berg D. E., Weiss A., Crossland L. Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol. 1980 May;142(2):439–446. doi: 10.1128/jb.142.2.439-446.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry E. A., Trumpower B. L. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. J Biol Chem. 1985 Feb 25;260(4):2458–2467. [PubMed] [Google Scholar]
- Bolgiano B., Smith L., Davies H. C. Electron transport reactions in a cytochrome c-deficient mutant of Paracoccus denitrificans. Biochim Biophys Acta. 1989 Feb 28;973(2):227–234. doi: 10.1016/s0005-2728(89)80426-8. [DOI] [PubMed] [Google Scholar]
- Bosma G., Braster M., Stouthamer A. H., van Verseveld H. W. Subfractionation and characterization of soluble c-type cytochromes from Paracoccus denitrificans cultured under various limiting conditions in the chemostat. Eur J Biochem. 1987 Jun 15;165(3):665–670. doi: 10.1111/j.1432-1033.1987.tb11492.x. [DOI] [PubMed] [Google Scholar]
- Burnell J. N., John P., Whatley F. R. The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans. Biochem J. 1975 Sep;150(3):527–536. doi: 10.1042/bj1500527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvajal E., Panek A. D., Mattoon J. R. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid. J Bacteriol. 1990 Jun;172(6):2855–2861. doi: 10.1128/jb.172.6.2855-2861.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra T. S., Friedrich C. G. Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol. 1986 May;166(2):446–452. doi: 10.1128/jb.166.2.446-452.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Gier J. W., Van Spanning R. J., Oltmann L. F., Stouthamer A. H. Oxidation of methylamine by a Paracoccus denitrificans mutant impaired in the synthesis of the bc1 complex and the aa3-type oxidase. Evidence for the existence of an alternative cytochrome c oxidase in this bacterium. FEBS Lett. 1992 Jul 13;306(1):23–26. doi: 10.1016/0014-5793(92)80829-6. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drygas M. E., Lambowitz A. M., Nargang F. E. Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem. 1989 Oct 25;264(30):17897–17906. [PubMed] [Google Scholar]
- Dumont M. E., Ernst J. F., Hampsey D. M., Sherman F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):235–241. doi: 10.1002/j.1460-2075.1987.tb04744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott T., Roth J. R. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis. Mol Gen Genet. 1989 Apr;216(2-3):303–314. doi: 10.1007/BF00334369. [DOI] [PubMed] [Google Scholar]
- Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
- Gonzales D. H., Neupert W. Biogenesis of mitochondrial c-type cytochromes. J Bioenerg Biomembr. 1990 Dec;22(6):753–768. doi: 10.1007/BF00786929. [DOI] [PubMed] [Google Scholar]
- Goodhew C. F., Wilson I. B., Hunter D. J., Pettigrew G. W. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J. 1990 Nov 1;271(3):707–712. doi: 10.1042/bj2710707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddock B. A., Schairer H. U. Electron-transport chains of Escherichia coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant. Eur J Biochem. 1973 May;35(1):34–45. doi: 10.1111/j.1432-1033.1973.tb02806.x. [DOI] [PubMed] [Google Scholar]
- Harms N., de Vries G. E., Maurer K., Veltkamp E., Stouthamer A. H. Isolation and characterization of Paracoccus denitrificans mutants with defects in the metabolism of one-carbon compounds. J Bacteriol. 1985 Dec;164(3):1064–1070. doi: 10.1128/jb.164.3.1064-1070.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harms N., van Spanning R. J. C1 metabolism in Paracoccus denitrificans: genetics of Paracoccus denitrificans. J Bioenerg Biomembr. 1991 Apr;23(2):187–210. doi: 10.1007/BF00762217. [DOI] [PubMed] [Google Scholar]
- Holmgren E., Hederstedt L., Rutberg L. Role of heme in synthesis and membrane binding of succinic dehydrogenase in Bacillus subtilis. J Bacteriol. 1979 May;138(2):377–382. doi: 10.1128/jb.138.2.377-382.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornberger U., Liebetanz R., Tichy H. V., Drews G. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain. Mol Gen Genet. 1990 May;221(3):371–378. doi: 10.1007/BF00259402. [DOI] [PubMed] [Google Scholar]
- Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malamud D. R., Borralho L. M., Panek A. D., Mattoon J. R. Modulation of cytochrome biosynthesis in yeast by antimetabolite action of levulinic acid. J Bacteriol. 1979 Jun;138(3):799–804. doi: 10.1128/jb.138.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malamud D. R., Padrão G. R., Borralho L. M., Arrese M., Panek A. D., Mattoon J. R. Regulation of porphyrin biosynthesis in yeast. Level of delta-aminolevulinic acid in porphyrin mutants of Saccharomyces cerevisiae. Braz J Med Biol Res. 1983 Oct;16(3):203–213. [PubMed] [Google Scholar]
- Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConville M. L., Charles H. P. Mutants of Escherichia coli K12 permeable to haemin. J Gen Microbiol. 1979 Jul;113(1):165–168. doi: 10.1099/00221287-113-1-165. [DOI] [PubMed] [Google Scholar]
- Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody M. D., Dailey H. A. Iron transport and its relation to heme biosynthesis in Rhodopseudomonas sphaeroides. J Bacteriol. 1985 Mar;161(3):1074–1079. doi: 10.1128/jb.161.3.1074-1079.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol. 1993 Apr;175(8):2304–2313. doi: 10.1128/jb.175.8.2304-2313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page M. D., Ferguson S. J. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans. Mol Microbiol. 1989 May;3(5):653–661. doi: 10.1111/j.1365-2958.1989.tb00213.x. [DOI] [PubMed] [Google Scholar]
- Page M. D., Ferguson S. J. Apo forms of cytochrome c550 and cytochrome cd1 are translocated to the periplasm of Paracoccus denitrificans in the absence of haem incorporation caused either mutation or inhibition of haem synthesis. Mol Microbiol. 1990 Jul;4(7):1181–1192. doi: 10.1111/j.1365-2958.1990.tb00693.x. [DOI] [PubMed] [Google Scholar]
- Page M. D., Ferguson S. J. Mutants of Methylobacterium extorquens and Paracoccus denitrificans deficient in c-type cytochrome biogenesis synthesise the methylamine-dehydrogenase polypeptides but cannot assemble the tryptophan-tryptophylquinone group. Eur J Biochem. 1993 Dec 1;218(2):711–717. doi: 10.1111/j.1432-1033.1993.tb18425.x. [DOI] [PubMed] [Google Scholar]
- Parke D. Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene. 1990 Sep 1;93(1):135–137. doi: 10.1016/0378-1119(90)90147-j. [DOI] [PubMed] [Google Scholar]
- Poole R. K., Hatch L., Cleeter M. W., Gibson F., Cox G. B., Wu G. Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol. 1993 Oct;10(2):421–430. [PubMed] [Google Scholar]
- Ramseier T. M., Winteler H. V., Hennecke H. Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem. 1991 Apr 25;266(12):7793–7803. [PubMed] [Google Scholar]
- Ritz D., Bott M., Hennecke H. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol. 1993 Aug;9(4):729–740. doi: 10.1111/j.1365-2958.1993.tb01733.x. [DOI] [PubMed] [Google Scholar]
- Sambongi Y., Ferguson S. J. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett. 1994 Feb 28;340(1-2):65–70. doi: 10.1016/0014-5793(94)80174-6. [DOI] [PubMed] [Google Scholar]
- Sanders H. K., Mied P. A., Briquet M., Hernandez-Rodriguez J., Gottal R. F., Mattoon J. R. Regulation of mitochondrial biogenesis: yeast mutants deficient in synthesis of delta-aminolevulinic acid. J Mol Biol. 1973 Oct 15;80(1):17–39. doi: 10.1016/0022-2836(73)90231-3. [DOI] [PubMed] [Google Scholar]
- Scholes P. B., McLain G., Smith L. Purification and properties of a c-type cytochrome from Micrococcus denitrificans. Biochemistry. 1971 May 25;10(11):2072–2076. doi: 10.1021/bi00787a017. [DOI] [PubMed] [Google Scholar]
- Steinrücke P., Ludwig B. Genetics of Paracoccus denitrificans. FEMS Microbiol Rev. 1993 Jan;10(1-2):83–117. doi: 10.1016/0378-1097(93)90505-v. [DOI] [PubMed] [Google Scholar]
- Stouthamer A. H. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie Van Leeuwenhoek. 1992 Jan;61(1):1–33. doi: 10.1007/BF00572119. [DOI] [PubMed] [Google Scholar]
- Tait G. H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J. 1973 Feb;131(2):389–403. doi: 10.1042/bj1310389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. K., Manoil C., Mekalanos J. J. Broad-host-range vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J Bacteriol. 1989 Apr;171(4):1870–1878. doi: 10.1128/jb.171.4.1870-1878.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
- Viebrock A., Zumft W. G. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J Bacteriol. 1987 Oct;169(10):4577–4580. doi: 10.1128/jb.169.10.4577-4580.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods R. A., Sanders H. K., Briquet M., Foury F., Drysdale B. E., Mattoon J. R. Regulation of mitochondrial biogenesis: enzymatic changes in cytochrome-deficient yeast mutants requiring delta-aminolevulinic acid. J Biol Chem. 1975 Dec 10;250(23):9090–9098. [PubMed] [Google Scholar]
- Wright M. S., Cardin R. D., Biel A. J. Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol. 1987 Mar;169(3):961–966. doi: 10.1128/jb.169.3.961-966.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Zollner A., Rödel G., Haid A. Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c1-heme lyase. Eur J Biochem. 1992 Aug 1;207(3):1093–1100. doi: 10.1111/j.1432-1033.1992.tb17146.x. [DOI] [PubMed] [Google Scholar]
- Zumft W. G., Döhler K., Körner H., Löchelt S., Viebrock A., Frunzke K. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch Microbiol. 1988;149(6):492–498. doi: 10.1007/BF00446750. [DOI] [PubMed] [Google Scholar]
- de Vries G. E., Harms N., Maurer K., Papendrecht A., Stouthamer A. H. Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity. J Bacteriol. 1988 Aug;170(8):3731–3737. doi: 10.1128/jb.170.8.3731-3737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Verseveld H. W., Krab K., Stouthamer A. H. Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans. Biochim Biophys Acta. 1981 May 13;635(3):525–534. doi: 10.1016/0005-2728(81)90111-0. [DOI] [PubMed] [Google Scholar]