Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Feb;67(2):362–368. doi: 10.1038/bjc.1993.66

Preclinical, phase I and pharmacokinetic studies with the dimethyl phenyltriazene CB10-277.

B J Foster 1, D R Newell 1, J Carmichael 1, A L Harris 1, L A Gumbrell 1, M Jones 1, P M Goodard 1, A H Calvert 1
PMCID: PMC1968184  PMID: 8431367

Abstract

Decarbazine is an imidazole dimethyltriazene with reproducible activity in patients with metastatic melanoma. CB10-277 is a phenyl dimethyltriazene which, like dacarbazine, requires metabolic activation to its corresponding monomethyl species for antitumour activity. In preclinical models (human melanoma xenografts and transplantable rodent tumours) CB10-277 showed a similar spectrum and level of activity when compared to dacarbazine. Pharmacokinetic studies were performed with CB10-277 in mice treated i.v. at the LD10 (750 mg m-2) and plasma analysed by HPLC. The parent drug area under the plasma concentration vs time curve (AUC) was 142 mM x minutes. Drug metabolism occurred as evidenced by the HPLC identification of the monomethyl species (AUC = 8 mM x minutes) as well as other metabolites. A Phase I trial using a short infusion with doses repeated every 21 days has been performed. Thirty-six patients received 80 courses over a dose range of 80-6,000 mg m-2. The dose limiting toxicity was nausea and vomiting which occurred in 80% of the evaluable courses > or = 900 mg m-2. The only other common side effect was a flushing or warm sensation, which occurred in over 75% of courses at > or = 1,350 mg m-2. There were no hemodynamic consequences. Responses occurred in patients with melanoma (one complete, two partial, one mixed/11), sarcoma (one mixed/6) and carcinoid (one partial/l). Pharmacokinetics were performed in 46 courses. The CB10-277 AUC increased linearly with dose (r = 0.9203, P < 0.001) up to 700 mM x minutes at 6,000 mg m-2). Evidence of CB10-277 metabolism was observed, as in mice, by detection of the monomethyl species and other metabolites. However, the plasma levels of the monomethyl species in patients (1.8 and 3.7 mM x minutes at 6,000 mg m-2) were less than those predicted from studies in mice. Despite this, antitumour activity in dacarbazine sensitive histologies was observed and additional studies with CB10-277 are recommended.

Full text

PDF
362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audette R. C., Connors T. A., Mandel H. G., Merai K., Ross W. C. Studies on the mechanism of action of the tumour inhibitory triazenes. Biochem Pharmacol. 1973 Aug 1;22(15):1855–1864. doi: 10.1016/0006-2952(73)90045-2. [DOI] [PubMed] [Google Scholar]
  2. Beretta G., Bonadonna G., Bajetta E., Tancini G., De Lena M., Azzarelli A., Veronesi U. Combination chemotherapy with DTIC (NSC-45388) in advanced malignant melanoma, soft tissue sarcomas, and Hodgkin's disease. Cancer Treat Rep. 1976 Feb;60(2):205–211. [PubMed] [Google Scholar]
  3. Bono V. H., Jr Studies on the mechanism of action of DTIC (NSC-45388). Cancer Treat Rep. 1976 Feb;60(2):141–148. [PubMed] [Google Scholar]
  4. Colombo T., D'Incalci M. Comparison of the antitumor activity of DTIC and 1-p-(3,3-dimethyl-1-triazeno) benzoic acid potassium salt on murine transplantable tumors and their hematological toxicity. Cancer Chemother Pharmacol. 1984;13(2):139–141. doi: 10.1007/BF00257132. [DOI] [PubMed] [Google Scholar]
  5. Comis R. L. DTIC (NSC-45388) in malignant melanoma: a perspective. Cancer Treat Rep. 1976 Feb;60(2):165–176. [PubMed] [Google Scholar]
  6. Connors T. A., Goddard P. M., Merai K., Ross W. C., Wilman D. E. Tumour inhibitory triazenes: structural requirements for an active metabolite. Biochem Pharmacol. 1976 Feb 1;25(3):241–246. doi: 10.1016/0006-2952(76)90207-0. [DOI] [PubMed] [Google Scholar]
  7. Gescher A., Hickman J. A., Simmonds R. J., Stevens M. F., Vaughan K. Studies of the mode of action of antitumour triazenes and triazines-II. Investigation of the selective toxicity of 1-aryl-3,3-dimethyltriazenes. Biochem Pharmacol. 1981 Jan 1;30(1):89–93. doi: 10.1016/0006-2952(81)90288-4. [DOI] [PubMed] [Google Scholar]
  8. Gibson N. W., Hartley J. A., LaFrance R. J., Vaughan K. Differential cytotoxicity and DNA-damaging effects produced in human cells of the Mer+ and Mer- phenotypes by a series of 1-aryl-3-alkyltriazenes. Cancer Res. 1986 Oct;46(10):4999–5003. [PubMed] [Google Scholar]
  9. Gibson N. W., Hartley J., La France R. J., Vaughan K. Differential cytotoxicity and DNA-damaging effects produced in human cells of the Mer+ and Mer- phenotypes by a series of alkyltriazenylimidazoles. Carcinogenesis. 1986 Feb;7(2):259–265. doi: 10.1093/carcin/7.2.259. [DOI] [PubMed] [Google Scholar]
  10. Giraldi T., Nisi C., Connors T. A., Goddard P. M. Preparation and antitumor activity of 1-aryl-3,3-dimethyltriazene derivatives. J Med Chem. 1977 Jun;20(6):850–853. doi: 10.1021/jm00216a025. [DOI] [PubMed] [Google Scholar]
  11. Hatheway G. J., Hansch C., Kim K. H., Milstein S. R., Schmidt C. L., Smith R. N., Quinn F. R. Antitumor 1-(X-aryl)-3,3-dialkyltriazenes. 1. Quantitative structure-activity relationships vs. L1210 leukemia in mice. J Med Chem. 1978 Jun;21(6):563–574. doi: 10.1021/jm00204a012. [DOI] [PubMed] [Google Scholar]
  12. Lin Y. T., Loo T. L. Preparation and antitumor activity of derivatives of 1-phenyl-3,3-dimethyltriazene. J Med Chem. 1972 Feb;15(2):201–203. doi: 10.1021/jm00272a020. [DOI] [PubMed] [Google Scholar]
  13. Loo T. L., Housholder G. E., Gerulath A. H., Saunders P. H., Farquhar D. Mechanism of action and pharmacology studies with DTIC (NSC-45388). Cancer Treat Rep. 1976 Feb;60(2):149–152. [PubMed] [Google Scholar]
  14. Lunn J. M., Harris A. L. Cytotoxicity of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC) on Mer+, Mer+Rem- and Mer- cell lines: differential potentiation by 3-acetamidobenzamide. Br J Cancer. 1988 Jan;57(1):54–58. doi: 10.1038/bjc.1988.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrison S. D. In vivo estimation of size of experimental tumors. J Natl Cancer Inst. 1983 Aug;71(2):407–408. [PubMed] [Google Scholar]
  16. POTTER M., ROBERTSON C. L. Development of plasma-cell neoplasms in BALB/c mice after intraperitoneal injection of paraffin-oil adjuvant, heart-killed Staphylococcus mixtures. J Natl Cancer Inst. 1960 Oct;25:847–861. doi: 10.1093/jnci/25.4.847. [DOI] [PubMed] [Google Scholar]
  17. Rosenoer V. M., Mitchley B. C., Roe F. J., Connors T. A. Walker carcinosarcoma 256 in study of anticancer agents. I. Method for simultaneous assessment of therapeutic value and toxicity. Cancer Res. 1966 Aug;26(8 Pt 2):937–941. [PubMed] [Google Scholar]
  18. SHEALY Y. F., MONTGOMERY J. A., LASTER W. R., Jr Antitumor activity of triazenoimidazoles. Biochem Pharmacol. 1962 Jul;11:674–676. doi: 10.1016/0006-2952(62)90130-2. [DOI] [PubMed] [Google Scholar]
  19. Sava G., Zorzet S., Perissin L., Giraldi T., Lassiani L. Effects of an inducer and an inhibitor of hepatic metabolism on the antitumor action of dimethyltriazenes. Cancer Chemother Pharmacol. 1988;21(3):241–245. doi: 10.1007/BF00262778. [DOI] [PubMed] [Google Scholar]
  20. Selby P. J., Thomas J. M., Monaghan P., Sloane J., Peckham M. J. Human tumour xenografts established and serially transplanted in mice immunologically deprived by thymectomy, cytosine arabinoside and whole-body irradiation. Br J Cancer. 1980 Jan;41(1):52–61. doi: 10.1038/bjc.1980.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shealy Y. F., Krauth C. A. Imidazoles. II. 5(or 4)-(Monosubstituted triazeno)imidazole-4(or 5)-carboxamides. J Med Chem. 1966 Jan;9(1):35–38. doi: 10.1021/jm00319a008. [DOI] [PubMed] [Google Scholar]
  22. Tranum B. L., Dixon D., Quagliana J., Neidhart J., Balcerzak S. P., Costanzi J. H., Fabian C. J., Neilan B., Maloney T., O'Bryan R. M. Lack of benefit of adjunctive chemotherapy in stage I malignant melanoma: a Southwest Oncology Group Study. Cancer Treat Rep. 1987 Jun;71(6):643–644. [PubMed] [Google Scholar]
  23. Vaughan K., Tang Y., Llanos G., Horton J. K., Simmonds R. J., Hickman J. A., Stevens M. F. Studies of the mode of action of antitumor triazenes and triazines. 6. 1-Aryl-3-(hydroxymethyl)-3-methyltriazenes: synthesis, chemistry, and antitumor properties. J Med Chem. 1984 Mar;27(3):357–363. doi: 10.1021/jm00369a020. [DOI] [PubMed] [Google Scholar]
  24. Veronesi U., Adamus J., Aubert C., Bajetta E., Beretta G., Bonadonna G., Bufalino R., Cascinelli N., Cocconi G., Durand J. A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N Engl J Med. 1982 Oct 7;307(15):913–916. doi: 10.1056/NEJM198210073071503. [DOI] [PubMed] [Google Scholar]
  25. Wilman D. E., Goddard P. M. Tumor inhibitory triazenes. 2. Variation of antitumor activity within an homologous series. J Med Chem. 1980 Sep;23(9):1052–1054. doi: 10.1021/jm00183a017. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES