Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Feb;67(2):226–231. doi: 10.1038/bjc.1993.44

Effect of anthracycline analogs on photolabelling of p-glycoprotein by [125I]iodomycin and [3H]azidopine: relation to lipophilicity and inhibition of daunorubicin transport in multidrug resistant cells.

E Friche 1, E J Demant 1, M Sehested 1, N I Nissen 1
PMCID: PMC1968196  PMID: 8094288

Abstract

Eight anthracycline analogs that have been shown to modulate multidrug resistance (Friche et al., Biochem. Pharmacol., 39, 1721-1726; 1990) were tested for their inhibitory effect on the photolabelling of P-glycoprotein. We photoaffinity labelled P-glycoprotein in daunorubicin (DNR) resistant Ehrlich ascites tumour cells (EHR2/DNR +) with a [125I]iodinated Bolton-Hunter derivative of daunorubicin ([125I]iodomycin) and with [3H]azidopine. The photolabelling of P-glycoprotein by [125I]iodomycin was inhibited more than 50% by 10 microM (1000-fold molar excess) of DNR (52%), N,N-dibenzyl-DNR (52%), and N-benzyladriamycin-14-valerate (AD-198) (85%). Vincristine at 10 microM inhibited [125I]iodomycin labelling of P-glycoprotein by 95%. Thus vincristine was more potent than any of the eight anthracyclines tested, despite its relatively low lipophilicity. Increasing the concentration of DNR, AD-198 and N,N-dibenzyl-DNR to 40 microM resulted in 90, 99.5 and 99.5% inhibition of P-glycoprotein labelling by [125I]iodomycin, respectively. In comparison with the other anthracycline analogs, N,N-dibenzyl-DNR and Ad-198 were also found to exert the greatest inhibition of [3H]azidopine labelling of P-glycoprotein (about 90% at 100-fold molar excess). The solvents Cremophor EL and Tween 80 (30 micrograms ml-1; 0.003% v/v), which are modulators of multidrug resistance in EHR2/DNR + cells, also inhibited [125I]iodomycin labelling > 90%. We showed earlier that there is a correlation between the lipid solubility within the anthracycline group of MDR-associated drugs and their ability to enhance DNR accumulation in EHR2/DNR + cells but a corresponding correlation to lipophilicity when it comes to the inhibitory effect on the specific photolabelling of Pgp ligand binding sites could not be demonstrated. Neither could a correlation between the modulating effect of the analogs on DNR accumulation and inhibition on the labelling of Pgp be demonstrated. With increasing lipophilicity of the analogs it seems that the chemical structure plays a lesser role, and the degree of lipophilicity becomes a more important feature.

Full text

PDF
226

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcamone F. Properties of antitumor anthracyclines and new developments in their application: Cain memorial award lecture. Cancer Res. 1985 Dec;45(12 Pt 1):5995–5999. [PubMed] [Google Scholar]
  2. Barbieri B., Giuliani F. C., Bordoni T., Casazza A. M., Geroni C., Bellini O., Suarato A., Gioia B., Penco S., Arcamone F. Chemical and biological characterization of 4'-iodo-4'-deoxydoxorubicin. Cancer Res. 1987 Aug 1;47(15):4001–4006. [PubMed] [Google Scholar]
  3. Beck W. T., Qian X. D. Photoaffinity substrates for P-glycoprotein. Biochem Pharmacol. 1992 Jan 9;43(1):89–93. doi: 10.1016/0006-2952(92)90665-6. [DOI] [PubMed] [Google Scholar]
  4. Beck W. T. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987 Sep 15;36(18):2879–2887. doi: 10.1016/0006-2952(87)90198-5. [DOI] [PubMed] [Google Scholar]
  5. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  6. Bruggemann E. P., Germann U. A., Gottesman M. M., Pastan I. Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. J Biol Chem. 1989 Sep 15;264(26):15483–15488. [PubMed] [Google Scholar]
  7. Burke T. G., Israel M., Seshadri R., Doroshow J. H. A fluorescence study examining how 14-valerate side chain substitution modulates anthracycline binding to small unilamellar phospholipid vesicles. Biochim Biophys Acta. 1989 Jun 26;982(1):123–130. doi: 10.1016/0005-2736(89)90182-x. [DOI] [PubMed] [Google Scholar]
  8. Busche R., Tümmler B., Cano-Gauci D. F., Riordan J. R. Equilibrium, kinetic and photoaffinity labeling studies of daunomycin binding to P-glycoprotein-containing membranes of multidrug-resistant Chinese hamster ovary cells. Eur J Biochem. 1989 Jul 15;183(1):189–197. doi: 10.1111/j.1432-1033.1989.tb14912.x. [DOI] [PubMed] [Google Scholar]
  9. Busche R., Tümmler B., Riordan J. R., Cano-Gauci D. F. Preparation and utility of a radioiodinated analogue of daunomycin in the study of multidrug resistance. Mol Pharmacol. 1989 Apr;35(4):414–421. [PubMed] [Google Scholar]
  10. Cornwell M. M., Safa A. R., Felsted R. L., Gottesman M. M., Pastan I. Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150- to 170-kDa protein detected by photoaffinity labeling. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3847–3850. doi: 10.1073/pnas.83.11.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dano K. Development of resistance to daunomycin (NSC-82151) in Ehrlich ascites tumor. Cancer Chemother Rep. 1971 Apr;55(2):133–141. [PubMed] [Google Scholar]
  12. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  13. Fleming G. F., Amato J. M., Agresti M., Safa A. R. Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992;29(6):445–449. doi: 10.1007/BF00684845. [DOI] [PubMed] [Google Scholar]
  14. Fojo A., Akiyama S., Gottesman M. M., Pastan I. Reduced drug accumulation in multiply drug-resistant human KB carcinoma cell lines. Cancer Res. 1985 Jul;45(7):3002–3007. [PubMed] [Google Scholar]
  15. Friche E., Danks M. K., Schmidt C. A., Beck W. T. Decreased DNA topoisomerase II in daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res. 1991 Aug 15;51(16):4213–4218. [PubMed] [Google Scholar]
  16. Friche E., Jensen P. B., Roed H., Skovsgaard T., Nissen N. I. In vitro circumvention of anthracycline--resistance in Ehrlich ascites tumour by anthracycline analogues. Biochem Pharmacol. 1990 Jun 1;39(11):1721–1726. doi: 10.1016/0006-2952(90)90117-4. [DOI] [PubMed] [Google Scholar]
  17. Friche E., Jensen P. B., Sehested M., Demant E. J., Nissen N. N. The solvents cremophor EL and Tween 80 modulate daunorubicin resistance in the multidrug resistant Ehrlich ascites tumor. Cancer Commun. 1990;2(9):297–303. [PubMed] [Google Scholar]
  18. Friche E., Skovsgaard T., Nissen N. I. Effect of verapamil on daunorubicin accumulation in Ehrlich ascites tumor cells. Cancer Chemother Pharmacol. 1987;19(1):35–39. doi: 10.1007/BF00296252. [DOI] [PubMed] [Google Scholar]
  19. Greenberger L. M., Lisanti C. J., Silva J. T., Horwitz S. B. Domain mapping of the photoaffinity drug-binding sites in P-glycoprotein encoded by mouse mdr1b. J Biol Chem. 1991 Nov 5;266(31):20744–20751. [PubMed] [Google Scholar]
  20. Hofsli E., Nissen-Meyer J. Reversal of multidrug resistance by lipophilic drugs. Cancer Res. 1990 Jul 1;50(13):3997–4002. [PubMed] [Google Scholar]
  21. Inaba M., Nagashima K. Non-antitumor vinca alkaloids reverse multidrug resistance in P388 leukemia cells in vitro. Jpn J Cancer Res. 1986 Feb;77(2):197–204. [PubMed] [Google Scholar]
  22. Kartner N., Evernden-Porelle D., Bradley G., Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. 1985 Aug 29-Sep 4Nature. 316(6031):820–823. doi: 10.1038/316820a0. [DOI] [PubMed] [Google Scholar]
  23. Kartner N., Riordan J. R., Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science. 1983 Sep 23;221(4617):1285–1288. doi: 10.1126/science.6137059. [DOI] [PubMed] [Google Scholar]
  24. Kaye S., Merry S. Tumour cell resistance to anthracyclines--a review. Cancer Chemother Pharmacol. 1985;14(2):96–103. doi: 10.1007/BF00434344. [DOI] [PubMed] [Google Scholar]
  25. Moscow J. A., Cowan K. H. Multidrug resistance. J Natl Cancer Inst. 1988 Mar 2;80(1):14–20. doi: 10.1093/jnci/80.1.14. [DOI] [PubMed] [Google Scholar]
  26. Pearce H. L., Safa A. R., Bach N. J., Winter M. A., Cirtain M. C., Beck W. T. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5128–5132. doi: 10.1073/pnas.86.13.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Riordan J. R., Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther. 1985;28(1):51–75. doi: 10.1016/0163-7258(85)90082-8. [DOI] [PubMed] [Google Scholar]
  28. Safa A. R., Agresti M., Tamai I., Mehta N. D., Vahabi S. The alpha 1-adrenergic photoaffinity probe [125I]arylazidoprazosin binds to a specific peptide of P-glycoprotein in multidrug-resistant cells. Biochem Biophys Res Commun. 1990 Jan 15;166(1):259–266. doi: 10.1016/0006-291x(90)91939-p. [DOI] [PubMed] [Google Scholar]
  29. Safa A. R., Glover C. J., Sewell J. L., Meyers M. B., Biedler J. L., Felsted R. L. Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem. 1987 Jun 5;262(16):7884–7888. [PubMed] [Google Scholar]
  30. Sehested M., Skovsgaard T., Jensen P. B., Demant E. J., Friche E., Bindslev N. Transport of the multidrug resistance modulators verapamil and azidopine in wild type and daunorubicin resistant Ehrlich ascites tumour cells. Br J Cancer. 1990 Jul;62(1):37–41. doi: 10.1038/bjc.1990.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tamai I., Safa A. R. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 1991 Sep 5;266(25):16796–16800. [PubMed] [Google Scholar]
  32. Wadler S., Yang C. P. Reversal of doxorubicin resistance by hydrophobic, but not hydrophilic, forskolins. Mol Pharmacol. 1991 Dec;40(6):960–964. [PubMed] [Google Scholar]
  33. Yang C. P., DePinho S. G., Greenberger L. M., Arceci R. J., Horwitz S. B. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989 Jan 15;264(2):782–788. [PubMed] [Google Scholar]
  34. Yoshimura A., Kuwazuru Y., Sumizawa T., Ichikawa M., Ikeda S., Uda T., Akiyama S. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J Biol Chem. 1989 Sep 25;264(27):16282–16291. [PubMed] [Google Scholar]
  35. Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]
  36. van der Bliek A. M., Borst P. Multidrug resistance. Adv Cancer Res. 1989;52:165–203. doi: 10.1016/s0065-230x(08)60213-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES