Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Feb;67(2):209–215. doi: 10.1038/bjc.1993.41

2'-deoxy-5-azacytidine increases binding of cisplatin to DNA by a mechanism independent of DNA hypomethylation.

J A Ellerhorst 1, P Frost 1, J L Abbruzzese 1, R A Newman 1, Y Chernajovsky 1
PMCID: PMC1968198  PMID: 7679279

Abstract

The chemotherapeutic agents 2'-deoxy-5-azacytidine (DAC) and cisplatin (cDDP) have been shown in vitro to be synergystic in their cytotoxicity toward human tumour cells. We have investigated possible molecular mechanisms underlying this synergy using the plasmid pSVE3 in vitro and after transfection into CMT3 cells. Increased binding of cDDP to DAC-substituted DNA generated in vivo was confirmed by flameless atomic absorption spectrophotometry (FAAS). The plasmid used in these experiments was unmethylated suggesting that DAC was effective in enhancing cDDP binding to DNA without acting as a hypomethylating agent, but by directly changing the topology of DNA. The role of DNA methylation in cDDP binding was studied using methylated and unmethylated plasmid incubated in vitro with cDDP. Restriction analyses and FAAS measurement of bound platinum indicated that methylated DNA bound more cDDP than unmethylated DNA. In addition, in vivo studies confirmed the in vitro observations since replication of methylated plasmid was inhibited to a greater extent than unmethylated plasmid.

Full text

PDF
209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbruzzese J. L., Frost P. Studies on the mechanism of the synergistic interaction between 2'-deoxy-5-azacytidine and cisplatin. Cancer Chemother Pharmacol. 1992;30(1):31–36. doi: 10.1007/BF00686482. [DOI] [PubMed] [Google Scholar]
  2. Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhalla K., Cole J., MacLaughlin W., Arlin Z., Baker M., Graham G., Grant S. Effect of deoxycytidine on the metabolism and cytotoxicity of 5-aza-2'-deoxycytidine and arabinosyl 5-azacytosine in normal and leukemic human myeloid progenitor cells. Leukemia. 1987 Dec;1(12):814–819. [PubMed] [Google Scholar]
  4. Bird A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol. 1978 Jan 5;118(1):49–60. doi: 10.1016/0022-2836(78)90243-7. [DOI] [PubMed] [Google Scholar]
  5. Chernajovsky Y. Constitutive in vitro binding of nuclear proteins to the 5'-flanking region of 6-16, a human gene inducible by alpha, beta-interferons. FEBS Lett. 1989 Dec 4;258(2):323–330. doi: 10.1016/0014-5793(89)81685-0. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Qasba P. K. Alkaline transfer of DNA to plastic membrane. Biochem Biophys Res Commun. 1984 Jul 18;122(1):340–344. doi: 10.1016/0006-291x(84)90480-7. [DOI] [PubMed] [Google Scholar]
  7. Ciccarelli R. B., Solomon M. J., Varshavsky A., Lippard S. J. In vivo effects of cis- and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein cross-linking, and inhibition of replication. Biochemistry. 1985 Dec 17;24(26):7533–7540. doi: 10.1021/bi00347a005. [DOI] [PubMed] [Google Scholar]
  8. Cortvrindt R., Bernheim J., Buyssens N., Roobol K. 5-Azacytidine and 5-aza-2'-deoxycytidine behave as different antineoplastic agents in B16 melanoma. Br J Cancer. 1987 Sep;56(3):261–265. doi: 10.1038/bjc.1987.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Creusot F., Acs G., Christman J. K. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine. J Biol Chem. 1982 Feb 25;257(4):2041–2048. [PubMed] [Google Scholar]
  10. D'Incalci M., Covey J. M., Zaharko D. S., Kohn K. W. DNA alkali-labile sites induced by incorporation of 5-aza-2'-deoxycytidine into DNA of mouse leukemia L1210 cells. Cancer Res. 1985 Jul;45(7):3197–3202. [PubMed] [Google Scholar]
  11. Djalali M., Adolph S., Steinbach P., Winking H., Hameister H. Fragile sites induced by 5-azacytidine and 5-azadeoxycytidine in the murine genome. Hereditas. 1990;112(1):77–81. doi: 10.1111/j.1601-5223.1990.tb00140.x. [DOI] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Frost P., Abbruzzese J. L., Hunt B., Lee D., Ellis M. Synergistic cytotoxicity using 2'-deoxy-5-azacytidine and cisplatin or 4-hydroperoxycyclophosphamide with human tumor cells. Cancer Res. 1990 Aug 1;50(15):4572–4577. [PubMed] [Google Scholar]
  14. Gerard R. D., Gluzman Y. New host cell system for regulated simian virus 40 DNA replication. Mol Cell Biol. 1985 Nov;5(11):3231–3240. doi: 10.1128/mcb.5.11.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glazer R. I., Knode M. C. 1-beta-D-arabinosyl-5-azacytosine. Cytocidal activity and effects on the synthesis and methylation of DNA in human colon carcinoma cells. Mol Pharmacol. 1984 Sep;26(2):381–387. [PubMed] [Google Scholar]
  16. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  17. Hartman J. R., Nayak D. P., Fareed G. C. Human influenza virus hemagglutinin is expressed in monkey cells using simian virus 40 vectors. Proc Natl Acad Sci U S A. 1982 Jan;79(2):233–237. doi: 10.1073/pnas.79.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  19. Jones P. A., Taylor S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980 May;20(1):85–93. doi: 10.1016/0092-8674(80)90237-8. [DOI] [PubMed] [Google Scholar]
  20. Kelley S. L., Basu A., Teicher B. A., Hacker M. P., Hamer D. H., Lazo J. S. Overexpression of metallothionein confers resistance to anticancer drugs. Science. 1988 Sep 30;241(4874):1813–1815. doi: 10.1126/science.3175622. [DOI] [PubMed] [Google Scholar]
  21. Michalowsky L. A., Jones P. A. Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2'-deoxycytidine resistance. Mol Cell Biol. 1987 Sep;7(9):3076–3083. doi: 10.1128/mcb.7.9.3076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Momparler R. L., Laliberté J. Induction of cytidine deaminase in HL-60 myeloid leukemic cells by 5-aza-2'-deoxycytidine. Leuk Res. 1990;14(9):751–754. doi: 10.1016/0145-2126(90)90067-j. [DOI] [PubMed] [Google Scholar]
  23. Newman R. A., Khokhar A. R., Sunderland B. A., Travis E. L., Bulger R. E. A comparison in rodents of renal and intestinal toxicity of cisplatin and a new water-soluble antitumor platinum complex: N-methyl-iminodiacetato-diaminocyclohexane platinum (II). Toxicol Appl Pharmacol. 1986 Jul;84(3):454–463. doi: 10.1016/0041-008x(86)90250-4. [DOI] [PubMed] [Google Scholar]
  24. Parrow V. C., Aleström P., Gautvik K. M. 5-azacytidine-induced alterations in the GH12C1 cells: effects on cellular morphology, chromosome structure, DNA and protein synthesis. J Cell Sci. 1989 Jul;93(Pt 3):533–543. doi: 10.1242/jcs.93.3.533. [DOI] [PubMed] [Google Scholar]
  25. Pinto A. L., Lippard S. J. Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta. 1985;780(3):167–180. doi: 10.1016/0304-419x(85)90001-0. [DOI] [PubMed] [Google Scholar]
  26. Razin A., Riggs A. D. DNA methylation and gene function. Science. 1980 Nov 7;210(4470):604–610. doi: 10.1126/science.6254144. [DOI] [PubMed] [Google Scholar]
  27. Snyder R. D., Lachmann P. J. Differential effects of 5-azacytidine and 5-azadeoxycytidine on cytotoxicity, DNA-strand breaking and repair of X-ray-induced DNA damage in HeLa cells. Mutat Res. 1989 Jul;226(3):185–190. doi: 10.1016/0165-7992(89)90018-3. [DOI] [PubMed] [Google Scholar]
  28. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  29. Ushay H. M., Tullius T. D., Lippard S. J. Inhibition of the BamHI cleavage and unwinding of pBR322 deoxyribonucleic acid by the antitumor drug cis-dichlorodiammineplatinum(II). Biochemistry. 1981 Jun 23;20(13):3744–3748. doi: 10.1021/bi00516a012. [DOI] [PubMed] [Google Scholar]
  30. Veselý J., Cihák A. Incorporation of a potent antileukemic agent, 5-aza-2'-deoxycytidine, into DNA of cells from leukemic mice. Cancer Res. 1977 Oct;37(10):3684–3689. [PubMed] [Google Scholar]
  31. Waalkes M. P., Miller M. S., Wilson M. J., Bare R. M., McDowell A. E. Increased metallothionein gene expression in 5-aza-2'-deoxycytidine-induced resistance to cadmium cytotoxicity. Chem Biol Interact. 1988;66(3-4):189–204. doi: 10.1016/0009-2797(88)90071-3. [DOI] [PubMed] [Google Scholar]
  32. Wang A. H., Fujii S., van Boom J. H., Rich A. Right-handed and left-handed double-helical DNA: structural studies. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):33–44. doi: 10.1101/sqb.1983.047.01.006. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES