Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Jan;67(1):47–57. doi: 10.1038/bjc.1993.8

A murine monoclonal antibody, MoAb HMSA-5, against a melanosomal component highly expressed in early stages, and common to normal and neoplastic melanocytes.

J E Der 1, W T Dixon 1, K Jimbow 1, T Horikoshi 1
PMCID: PMC1968213  PMID: 7678981

Abstract

The melanosome is a secretory organelle unique to the melanocyte and its neoplastic counterpart, malignant melanoma. The synthesis and assembly of these intracytoplasmic organelles is not yet fully understood. We have developed a murine monoclonal antibody (MoAb) against melanosomes isolated from human melanocytes (newborn foreskin) cultured in the presence of 12-O tetradecanoyl phorbol-13-acetate (TPA). This MoAb, designated HMSA-5 (Human Melanosome-Specific Antigen-5) (IgG1), recognised a cytoplasmic antigen in both normal human melanocytes and neoplastic cells, such as common and dysplastic melanocytic nevi, and malignant melanoma. None of the carcinoma or sarcoma specimens tested showed positive reactivity with MoAb HMSA-5. Under immunoelectron microscopy, immuno-gold deposition was seen on microvesicles associated with melanosomes, and a portion of the ER-Golgi complexes. Radioimmunoprecipitation analysis showed that the HMSA-5 reactive antigen was a glycoprotein of M(r) 69 to 73 kDa. A pulse-chase time course study showed that the amount of antigen detected by MoAb HMSA-5 decreased over a 24 h period without significant expression on the cell surface, or corresponding appearance of the antigen in the culture supernatant. This glycoprotein appears to play a role in the early stages of melanosomal development, and the HMSA-5 reactive epitope may be lost during subsequent maturation processes. Importantly, HMSA-5 can be identified in all forms of human melanocytes, hence it can be considered a new common melanocytic marker even on routine paraffin sections.

Full text

PDF
47

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu Y., Jimbow K. Development and characterization of a mouse monoclonal antibody, MoAb HMSA-1, against a melanosomal fraction of human malignant melanoma. Cancer Res. 1986 Jun;46(6):2904–2911. [PubMed] [Google Scholar]
  2. Akutsu Y., Jimbow K. Immunoelectron microscopic demonstration of human melanosome associated antigens (HMSA) on melanoma cells: comparison with tyrosinase distribution. J Invest Dermatol. 1988 Feb;90(2):179–184. doi: 10.1111/1523-1747.ep12462190. [DOI] [PubMed] [Google Scholar]
  3. Bale S. J., Dracopoli N. C., Tucker M. A., Clark W. H., Jr, Fraser M. C., Stanger B. Z., Green P., Donis-Keller H., Housman D. E., Greene M. H. Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N Engl J Med. 1989 May 25;320(21):1367–1372. doi: 10.1056/NEJM198905253202102. [DOI] [PubMed] [Google Scholar]
  4. Chintamaneni C. D., Ramsay M., Colman M. A., Fox M. F., Pickard R. T., Kwon B. S. Mapping the human CAS2 gene, the homologue of the mouse brown (b) locus, to human chromosome 9p22-pter. Biochem Biophys Res Commun. 1991 Jul 15;178(1):227–235. doi: 10.1016/0006-291x(91)91803-k. [DOI] [PubMed] [Google Scholar]
  5. Cohen T., Muller R. M., Tomita Y., Shibahara S. Nucleotide sequence of the cDNA encoding human tyrosinase-related protein. Nucleic Acids Res. 1990 May 11;18(9):2807–2808. doi: 10.1093/nar/18.9.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuomo M., Nicotra M. R., Apollonj C., Fraioli R., Giacomini P., Natali P. G. Production and characterization of the murine monoclonal antibody 2G10 to a human T4-tyrosinase epitope. J Invest Dermatol. 1991 Apr;96(4):446–451. doi: 10.1111/1523-1747.ep12470092. [DOI] [PubMed] [Google Scholar]
  7. Eager K. B., Kennett R. H. The use of conventional antisera in the production of specific monoclonal antibodies. J Immunol Methods. 1983 Nov 11;64(1-2):157–164. doi: 10.1016/0022-1759(83)90394-0. [DOI] [PubMed] [Google Scholar]
  8. Eisinger M., Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2018–2022. doi: 10.1073/pnas.79.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  10. Garcia P. D., Ou J. H., Rutter W. J., Walter P. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J Cell Biol. 1988 Apr;106(4):1093–1104. doi: 10.1083/jcb.106.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giacomini P., Fraioli R., Cuomo M., Natali P. G. Membrane compartmentalization of melanosomal gp75. J Invest Dermatol. 1992 Mar;98(3):340–342. doi: 10.1111/1523-1747.ep12499801. [DOI] [PubMed] [Google Scholar]
  12. Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J Cell Biol. 1983 Mar;96(3):835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halaban R., Moellmann G. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4809–4813. doi: 10.1073/pnas.87.12.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayashibe K., Mishima Y., Ichihashi M., Kawai M. Melanosomal antigenic expression on the cell surface and intracellular subunits within melanogenic compartments of pigment cells: analysis by antimelanosome-associated monoclonal antibody. J Invest Dermatol. 1986 Jul;87(1):89–94. doi: 10.1111/1523-1747.ep12523590. [DOI] [PubMed] [Google Scholar]
  15. Hearing V. J., Jiménez M. Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res. 1989 Mar-Apr;2(2):75–85. doi: 10.1111/j.1600-0749.1989.tb00166.x. [DOI] [PubMed] [Google Scholar]
  16. Herlyn M., Clark W. H., Rodeck U., Mancianti M. L., Jambrosic J., Koprowski H. Biology of tumor progression in human melanocytes. Lab Invest. 1987 May;56(5):461–474. [PubMed] [Google Scholar]
  17. Herlyn M., Thurin J., Balaban G., Bennicelli J. L., Herlyn D., Elder D. E., Bondi E., Guerry D., Nowell P., Clark W. H. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 1985 Nov;45(11 Pt 2):5670–5676. [PubMed] [Google Scholar]
  18. Houghton A. N., Real F. X., Davis L. J., Cordon-Cardo C., Old L. J. Phenotypic heterogeneity of melanoma. Relation to the differentiation program of melanoma cells. J Exp Med. 1987 Mar 1;165(3):812–829. doi: 10.1084/jem.165.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Imokawa G. Analysis of carbohydrate properties essential for melanogenesis in tyrosinases of cultured malignant melanoma cells by differential carbohydrate processing inhibition. J Invest Dermatol. 1990 Jul;95(1):39–49. doi: 10.1111/1523-1747.ep12873289. [DOI] [PubMed] [Google Scholar]
  20. Jackson I. J. A cDNA encoding tyrosinase-related protein maps to the brown locus in mouse. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4392–4396. doi: 10.1073/pnas.85.12.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jimbow K., Fitzpatrick T. B. Characterization of a new melanosomal structural component--the vesiculoglobular body--by conventional transmission, high-voltage, and scanning electron microscopy. J Ultrastruct Res. 1974 Aug;48(2):269–283. doi: 10.1016/s0022-5320(74)80082-1. [DOI] [PubMed] [Google Scholar]
  22. Jimbow K., Yamana K., Akutsu Y., Maeda K. Nature and biosynthesis of structural matrix protein in melanosomes: melanosomal structural protein as differentiation antigen for neoplastic melanocytes. Prog Clin Biol Res. 1988;256:169–182. [PubMed] [Google Scholar]
  23. Kwon B. S., Halaban R., Kim G. S., Usack L., Pomerantz S., Haq A. K. A melanocyte-specific complementary DNA clone whose expression is inducible by melanotropin and isobutylmethyl xanthine. Mol Biol Med. 1987 Dec;4(6):339–355. [PubMed] [Google Scholar]
  24. Kwon B. S., Haq A. K., Pomerantz S. H., Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7473–7477. doi: 10.1073/pnas.84.21.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwon B. S., Haq A. K., Wakulchik M., Kestler D., Barton D. E., Francke U., Lamoreux M. L., Whitney J. B., 3rd, Halaban R. Isolation, chromosomal mapping, and expression of the mouse tyrosinase gene. J Invest Dermatol. 1989 Nov;93(5):589–594. doi: 10.1111/1523-1747.ep12319693. [DOI] [PubMed] [Google Scholar]
  26. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  27. Lewis V., Green S. A., Marsh M., Vihko P., Helenius A., Mellman I. Glycoproteins of the lysosomal membrane. J Cell Biol. 1985 Jun;100(6):1839–1847. doi: 10.1083/jcb.100.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maeda K., Maeda K., Jimbow K. Specification and use of a mouse monoclonal antibody raised against melanosomes for the histopathologic diagnosis of amelanotic malignant melanoma. Cancer. 1988 Sep 1;62(5):926–934. doi: 10.1002/1097-0142(19880901)62:5<926::aid-cncr2820620513>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  30. Mattes M. J., Thomson T. M., Old L. J., Lloyd K. O. A pigmentation-associated, differentiation antigen of human melanoma defined by a precipitating antibody in human serum. Int J Cancer. 1983 Dec 15;32(6):717–721. doi: 10.1002/ijc.2910320610. [DOI] [PubMed] [Google Scholar]
  31. McEwan M., Parsons P. G., Moss D. J., Burrows S., Stenzel D., Bishop C. J., Strutton G. M. Monoclonal antibody against a melanosomal protein in melanotic and amelanotic human melanoma cells. Pigment Cell Res. 1989 Jan-Feb;2(1):1–7. doi: 10.1111/j.1600-0749.1989.tb00150.x. [DOI] [PubMed] [Google Scholar]
  32. Müller G., Ruppert S., Schmid E., Schütz G. Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 1988 Sep;7(9):2723–2730. doi: 10.1002/j.1460-2075.1988.tb03126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nowell P. C. Chromosomal and molecular clues to tumor progression. Semin Oncol. 1989 Apr;16(2):116–127. [PubMed] [Google Scholar]
  34. Oikawa A., Saeki H., Akiyama T., Matsumoto J. Electron microscopic evidence for stimulation of melanosomal maturation by lysosomotropic agents and monensin in cultured B16 mouse melanoma cells. Pigment Cell Res. 1987;1(1):44–50. doi: 10.1111/j.1600-0749.1987.tb00533.x. [DOI] [PubMed] [Google Scholar]
  35. Roux L., Lloyd K. O. Glycosylation characteristics of pigmentation-associated antigen (GP75): an intracellular glycoprotein of human melanocytes and malignant melanomas. Arch Biochem Biophys. 1986 Nov 15;251(1):87–96. doi: 10.1016/0003-9861(86)90054-8. [DOI] [PubMed] [Google Scholar]
  36. Shibahara S., Taguchi H., Muller R. M., Shibata K., Cohen T., Tomita Y., Tagami H. Structural organization of the pigment cell-specific gene located at the brown locus in mouse. Its promoter activity and alternatively spliced transcript. J Biol Chem. 1991 Aug 25;266(24):15895–15901. [PubMed] [Google Scholar]
  37. Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith H. Phytochrome and photomorphogenesis in plants. Nature. 1970 Aug 15;227(5259):665–668. doi: 10.1038/227665a0. [DOI] [PubMed] [Google Scholar]
  39. Tai T., Eisinger M., Ogata S., Lloyd K. O. Glycoproteins as differentiation markers in human malignant melanoma and melanocytes. Cancer Res. 1983 Jun;43(6):2773–2779. [PubMed] [Google Scholar]
  40. Takahashi H., Horikoshi T., Jimbow K. Fine structural characterization of melanosomes in dysplastic nevi. Cancer. 1985 Jul 1;56(1):111–123. doi: 10.1002/1097-0142(19850701)56:1<111::aid-cncr2820560118>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  41. Thomson T. M., Mattes M. J., Roux L., Old L. J., Lloyd K. O. Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J Invest Dermatol. 1985 Aug;85(2):169–174. doi: 10.1111/1523-1747.ep12276608. [DOI] [PubMed] [Google Scholar]
  42. Thomson T. M., Real F. X., Murakami S., Cordon-Cardo C., Old L. J., Houghton A. N. Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol. 1988 Apr;90(4):459–466. doi: 10.1111/1523-1747.ep12460906. [DOI] [PubMed] [Google Scholar]
  43. Vijayasaradhi S., Bouchard B., Houghton A. N. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med. 1990 Apr 1;171(4):1375–1380. doi: 10.1084/jem.171.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vijayasaradhi S., Houghton A. N. Purification of an autoantigenic 75-kDa human melanosomal glycoprotein. Int J Cancer. 1991 Jan 21;47(2):298–303. doi: 10.1002/ijc.2910470221. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES