Abstract
The role of cholecystokinin (CCK) has been explored in pancreatic carcinogenesis following pancreatobiliary diversion (PBD), using the specific CCK receptor antagonist CR-1409. Male Wistar rats (n = 80) weighing 70-100 g were given weekly i.p. injections of azaserine (30 mg kg-1 week-1) for 3 consecutive weeks. One week later animals were randomised to receive either PBD or sham PBD and thereafter to receive s.c. injections of either saline or CR-1409 (10 mg kg-1 day-1, 5 days a week). Six months after operation surviving rats were killed as follows: sham + saline 20, PBD + saline 19, sham + CR-1409 14, PBD + CR-1409 11. Cardiac blood was taken for CCK assay and the pancreas was excised for wet weight measurement and quantitative estimation of atypical acinar cell foci (AACF), the precursor of carcinoma. PBD reduced median body weight (3-20% less than shams) but trebled the absolute and relative pancreatic weights (P < 0.001). CR-1409 blunted this adaptive response to PBD, reducing absolute pancreatic weight by 35% (P < 0.005). PBD quadrupled circulating CCK concentrations, regardless of the antagonist treatment. Acidophilic AACF occurred only in rats with PBD. CR-1409 markedly reduced the number of observed acidophilic AACF by 90% (P < 0.001) and the number of foci per pancreas by 93% (P < 0.001). Moreover, CR-1409 reduced the mean focal diameter of each lesion by 18% (P < 0.005), the mean focal volume by 58% (P < 0.05) and the percentage of pancreas occupied by acidophilic foci by 95% (P < 0.001). PBD enhances pancreatic carcinogenesis by causing hypercholecystokininaemia, and CR-1409 largely inhibits this enhancement.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrén-Sandberg A., Dawiskiba S., Ihse I. Studies of the effect of cerulein administration on experimental pancreatic carcinogenesis. Scand J Gastroenterol. 1984 Jan;19(1):122–128. [PubMed] [Google Scholar]
- Barrowman J. A., Mayston P. D. Proceedings: The trophic influence of cholecystokinin on the rat pancreas. J Physiol. 1974 Apr;238(1):73P–75P. [PubMed] [Google Scholar]
- Benz C., Hollander C., Miller B. Endocrine-responsive pancreatic carcinoma: steroid binding and cytotoxicity studies in human tumor cell lines. Cancer Res. 1986 May;46(5):2276–2281. [PubMed] [Google Scholar]
- Bristol J. B., Wells M., Williamson R. C. Adaptation to jejunoileal bypass promotes experimental colorectal carcinogenesis. Br J Surg. 1984 Feb;71(2):123–126. doi: 10.1002/bjs.1800710216. [DOI] [PubMed] [Google Scholar]
- Campbell H. A., Pitot H. C., Potter V. R., Laishes B. A. Application of quantitative stereology to the evaluation of enzyme-altered foci in rat liver. Cancer Res. 1982 Feb;42(2):465–472. [PubMed] [Google Scholar]
- Dembinski A. B., Johnson L. R. Stimulation of pancreatic growth by secretin, caerulein, and pentagastrin. Endocrinology. 1980 Jan;106(1):323–328. doi: 10.1210/endo-106-1-323. [DOI] [PubMed] [Google Scholar]
- Douglas B. R., Woutersen R. A., Jansen J. B., de Jong A. J., Rovati L. C., Lamers C. B. Modulation by CR-1409 (lorglumide), a cholecystokinin receptor antagonist, of trypsin inhibitor-enhanced growth of azaserine-induced putative preneoplastic lesions in rat pancreas. Cancer Res. 1989 May 1;49(9):2438–2441. [PubMed] [Google Scholar]
- Eysselein V. E., Eberlein G. A., Hesse W. H., Singer M. V., Goebell H., Reeve J. R., Jr Cholecystokinin-58 is the major circulating form of cholecystokinin in canine blood. J Biol Chem. 1987 Jan 5;262(1):214–217. [PubMed] [Google Scholar]
- Hosomi M., Lirussi F., Stace N. H., Vaja S., Murphy G. M., Dowling R. H. Mucosal polyamine profile in normal and adapting (hypo and hyperplastic) intestine: effects of DFMO treatment. Gut. 1987;28 (Suppl):103–107. doi: 10.1136/gut.28.suppl.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howatson A. G., Carter D. C. Pancreatic carcinogenesis-enhancement by cholecystokinin in the hamster-nitrosamine model. Br J Cancer. 1985 Jan;51(1):107–114. doi: 10.1038/bjc.1985.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung Y. K., Lee P. C., Lebenthal E. Maturation of cholecystokinin receptors in pancreatic acini of rats. Am J Physiol. 1986 May;250(5 Pt 1):G594–G597. doi: 10.1152/ajpgi.1986.250.5.G594. [DOI] [PubMed] [Google Scholar]
- Lhoste E. F., Longnecker D. S. Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas. Cancer Res. 1987 Jun 15;47(12):3273–3277. [PubMed] [Google Scholar]
- Lhoste E. F., Roebuck B. D., Longnecker D. S. Stimulation of the growth of azaserine-induced nodules in the rat pancreas by dietary camostate (FOY-305). Carcinogenesis. 1988 Jun;9(6):901–906. doi: 10.1093/carcin/9.6.901. [DOI] [PubMed] [Google Scholar]
- Longnecker D. S., French J., Hyde E., Lilja H. S., Yager J. D., Jr Effect of age on nodule induction by azaserine and DNA synthesis in rat pancreas. J Natl Cancer Inst. 1977 Jun;58(6):1769–1775. doi: 10.1093/jnci/58.6.1769. [DOI] [PubMed] [Google Scholar]
- Longnecker D. S., Lilja H. S., French J., Kuhlmann E., Noll W. Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett. 1979 Aug;7(4):197–202. doi: 10.1016/s0304-3835(79)80080-4. [DOI] [PubMed] [Google Scholar]
- Longnecker D. S., Roebuck B. D., Yager J. D., Jr, Lilja H. S., Siegmund B. Pancreatic carcinoma in azaserine-treated rats: induction, classification and dietary modulation of incidence. Cancer. 1981 Mar 15;47(6 Suppl):1562–1572. doi: 10.1002/1097-0142(19810315)47:6+<1562::aid-cncr2820471419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Longnecker D. S., Sumi C. Effects of sex steroid hormones on pancreatic cancer in the rat. Int J Pancreatol. 1990 Aug-Nov;7(1-3):159–165. doi: 10.1007/BF02924233. [DOI] [PubMed] [Google Scholar]
- Malt R. A., Chester J. F., Gaissert H. A., Ross J. S. Augmentation of chemically induced pancreatic and bronchial cancers by epidermal growth factor. Gut. 1987;28 (Suppl):249–251. doi: 10.1136/gut.28.suppl.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miazza B. M., Widgren S., Chayvialle J. A., Nicolet T., Loizeau E. Exocrine pancreatic nodules after longterm pancreaticobiliary diversion in rats. An effect of raised CCK plasma concentrations. Gut. 1987;28 (Suppl):269–273. doi: 10.1136/gut.28.suppl.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pour P. M., Lawson T., Helgeson S., Donnelly T., Stepan K. Effect of cholecystokinin on pancreatic carcinogenesis in the hamster model. Carcinogenesis. 1988 Apr;9(4):597–601. doi: 10.1093/carcin/9.4.597. [DOI] [PubMed] [Google Scholar]
- Pugh T. D., King J. H., Koen H., Nychka D., Chover J., Wahba G., He Y. H., Goldfarb S. Reliable stereological method for estimating the number of microscopic hepatocellular foci from their transections. Cancer Res. 1983 Mar;43(3):1261–1268. [PubMed] [Google Scholar]
- Rao M. S., Upton M. P., Subbarao V., Scarpelli D. G. Two populations of cells with differing proliferative capacities in atypical acinar cell foci induced by 4-hydroxyaminoquinoline-1-oxide in the rat pancreas. Lab Invest. 1982 May;46(5):527–534. [PubMed] [Google Scholar]
- Redding T. W., Schally A. V. Inhibition of growth of pancreatic carcinomas in animal models by analogs of hypothalamic hormones. Proc Natl Acad Sci U S A. 1984 Jan;81(1):248–252. doi: 10.1073/pnas.81.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roebuck B. D., Baumgartner K. J., Thron C. D. Characterization of two populations of pancreatic atypical acinar cell foci induced by azaserine in the rat. Lab Invest. 1984 Feb;50(2):141–146. [PubMed] [Google Scholar]
- Roebuck B. D., Longnecker D. S., Baumgartner K. J., Thron C. D. Carcinogen-induced lesions in the rat pancreas: effects of varying levels of essential fatty acid. Cancer Res. 1985 Nov;45(11 Pt 1):5252–5256. [PubMed] [Google Scholar]
- Roebuck B. D., Longnecker D. S. Species and rat strain variation in pancreatic nodule induction by azaserine. J Natl Cancer Inst. 1977 Oct;59(4):1273–1277. doi: 10.1093/jnci/59.4.1273. [DOI] [PubMed] [Google Scholar]
- Scarpelli D. G., Rao M. S., Reddy J. K. Studies of pancreatic carcinogenesis in different animal models. Environ Health Perspect. 1984 Jun;56:219–227. [PMC free article] [PubMed] [Google Scholar]
- Stewart I. D., Flaks B., Watanapa P., Davies P. W., Williamson R. C. Pancreatobiliary diversion enhances experimental pancreatic carcinogenesis. Br J Cancer. 1991 Jan;63(1):63–66. doi: 10.1038/bjc.1991.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumi C., Longnecker D. S., Roebuck B. D., Brinck-Johnsen T. Inhibitory effects of estrogen and castration on the early stage of pancreatic carcinogenesis in Fischer rats treated with azaserine. Cancer Res. 1989 May 1;49(9):2332–2336. [PubMed] [Google Scholar]
- Townsend C. M., Jr, Singh P., Thompson J. C. Effects of gastrointestinal peptides on gastrointestinal cancer growth. Gastroenterol Clin North Am. 1989 Dec;18(4):777–791. [PubMed] [Google Scholar]
- Watanapa P., Efa E. F., Beardshall K., Calam J., Sarraf C. E., Alison M. R., Williamson R. C. Inhibitory effect of a cholecystokinin antagonist on the proliferative response of the pancreas to pancreatobiliary diversion. Gut. 1991 Sep;32(9):1049–1054. doi: 10.1136/gut.32.9.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
