Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Sep;68(3):549–554. doi: 10.1038/bjc.1993.384

Scintigraphic evaluation of functional hepatic mass in patients with advanced breast cancer.

I Virgolini 1, G Kornek 1, J Höbart 1, S R Li 1, M Raolerer 1, H Bergmann 1, W Scheithauer 1, T Pantev 1, P Angelberger 1, H Sinzinger 1, et al.
PMCID: PMC1968402  PMID: 8353045

Abstract

Recent studies suggest a high specificity of 99mTc-galactosyl neoglycoalbumin (99mTc-NGA) receptor scanning in vivo by providing both morphological and functional diagnosis of liver disease. In 22 patients with advanced breast cancer 99mTc-NGA (150 MBq; 50 nmol) was exclusively trapped by the liver, the images showing 'cold spots' in areas of liver metastases formation. A two-tailed analysis was performed: the time activity curves recorded for the liver and precordial area were subjected to a kinetic receptor-calculating model allowing an estimation of the NGA-receptor concentration of the liver (i.e. hepatic binding protein, HBP) as well as calculation of the residual functional liver volume (RFLV) via the S.P.E.C.T.-study. In breast cancer patients with liver metastases a significantly (P < 0.01) lower HBP-concentration was estimated (0.65 +/- 0.16 vs 0.82 +/- 0.17 mumol l-1) as evidenced by a lower 99mTc-NGA-accumulation in the liver resulting also in a significantly (P < 0.001) lower RFLV (739 +/- 348 vs 1336 +/- 184 ml). In four amonafide-treated patients (800 mg m-2 intravenous infusion over 3 h) approximately one week after one chemotherapy cycle a significant (P < 0.05) increase in HBP-concentration (0.56 +/- 0.10 vs 0.72 +/- 0.06 mumol l-1) of the liver was found corresponding with an increase in RVLF (546 +/- 297 vs 670 +/- 265 ml). These regulatory mechanisms at the HBP level measured in vivo provide further evidence that 99mTc-NGA should have promise as a clinically useful receptor radiopharmaceutical for both quantification of liver function and assessment of liver morphology.

Full text

PDF
549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B. S., Beran M., Bakic M., Silberman L. E., Newman R. A., Zwelling L. A. In vitro toxicity and DNA cleaving capacity of benzisoquinolinedione (nafidimide; NSC 308847) in human leukemia. Cancer Res. 1987 Feb 15;47(4):1040–1044. [PubMed] [Google Scholar]
  2. Eckelman W. C., Reba R. C., Gibson R. E., Rzeszotarski W. J., Vieras F., Mazaitis J. K., Francis B. Receptor-binding radiotracers: a class of potential radiopharmaceuticals. J Nucl Med. 1979 Apr;20(4):350–357. [PubMed] [Google Scholar]
  3. Farde L., Hall H., Ehrin E., Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science. 1986 Jan 17;231(4735):258–261. doi: 10.1126/science.2867601. [DOI] [PubMed] [Google Scholar]
  4. Krenning E. P., Bakker W. H., Breeman W. A., Koper J. W., Kooij P. P., Ausema L., Lameris J. S., Reubi J. C., Lamberts S. W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet. 1989 Feb 4;1(8632):242–244. doi: 10.1016/s0140-6736(89)91258-0. [DOI] [PubMed] [Google Scholar]
  5. Kudo M., Vera D. R., Trudeau W. L., Stadalnik R. C. Validation of in vivo receptor measurements via in vitro radioassay: technetium-99m-galactosyl-neoglycoalbumin as prototype model. J Nucl Med. 1991 Jun;32(6):1177–1182. [PubMed] [Google Scholar]
  6. Logan J., Wolf A. P., Shiue C. Y., Fowler J. S. Kinetic modeling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers. J Neurochem. 1987 Jan;48(1):73–83. doi: 10.1111/j.1471-4159.1987.tb13129.x. [DOI] [PubMed] [Google Scholar]
  7. Marshall J. S., Williams S. Serum inhibitors of desialylated glycoprotein binding to hepatocyte membranes. Biochim Biophys Acta. 1978 Sep 21;543(1):41–52. doi: 10.1016/0304-4165(78)90452-x. [DOI] [PubMed] [Google Scholar]
  8. Pavlik E. J., Nelson K., Gallion H. H., van Nagell J. R., Jr, Donaldson E. S., Shih W. J., Spicer J. A., Preston D. F., Baranczuk R. J., Kenady D. E. Characterization of high specific activity [16 alpha-123I]Iodo-17 beta-estradiol as an estrogen receptor-specific radioligand capable of imaging estrogen receptor-positive tumors. Cancer Res. 1990 Dec 15;50(24):7799–7805. [PubMed] [Google Scholar]
  9. Scheithauer W., Dittrich C., Kornek G., Haider K., Linkesch W., Gisslinger H., Depisch D. Phase II study of amonafide in advanced breast cancer. Breast Cancer Res Treat. 1991 Dec;20(1):63–67. doi: 10.1007/BF01833358. [DOI] [PubMed] [Google Scholar]
  10. Stadalnik R. C., Vera D. R., Woodle E. S., Trudeau W. L., Porter B. A., Ward R. E., Krohn K. A., O'Grady L. F. Technetium-99m NGA functional hepatic imaging: preliminary clinical experience. J Nucl Med. 1985 Nov;26(11):1233–1242. [PubMed] [Google Scholar]
  11. Steer C. J., Ashwell G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes. J Biol Chem. 1980 Apr 10;255(7):3008–3013. [PubMed] [Google Scholar]
  12. Stockert R. J., Becker F. F. Diminished hepatic binding protein for desialylated glycoproteins during chemical hepatocarcinogenesis. Cancer Res. 1980 Oct;40(10):3632–3634. [PubMed] [Google Scholar]
  13. Stockert R. J., Morell A. G. Hepatic binding protein: the galactose-specific receptor of mammalian hepatocytes. Hepatology. 1983 Sep-Oct;3(5):750–757. doi: 10.1002/hep.1840030520. [DOI] [PubMed] [Google Scholar]
  14. Strauss L. G., Clorius J. H., Frank T., van Kaick G. Single photon emission computerized tomography (SPECT) for estimates of liver and spleen volume. J Nucl Med. 1984 Jan;25(1):81–85. [PubMed] [Google Scholar]
  15. Tauxe W. N., Soussaline F., Todd-Pokropek A., Cao A., Collard P., Richard S., Raynaud C., Itti R. Determination of organ volume by single-photon emission tomography. J Nucl Med. 1982 Nov;23(11):984–987. [PubMed] [Google Scholar]
  16. Vera D. R., Krohn K. A., Scheibe P. O., Stadalnik R. C. Identifiability analysis of an in vivo receptor-binding radiopharmacokinetic system. IEEE Trans Biomed Eng. 1985 May;32(5):312–322. doi: 10.1109/TBME.1985.325544. [DOI] [PubMed] [Google Scholar]
  17. Vera D. R., Krohn K. A., Stadalnik R. C., Scheibe P. O. Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocytes. Radiology. 1984 Apr;151(1):191–196. doi: 10.1148/radiology.151.1.6701314. [DOI] [PubMed] [Google Scholar]
  18. Vera D. R., Stadalnik R. C., Trudeau W. L., Scheibe P. O., Krohn K. A. Measurement of receptor concentration and forward-binding rate constant via radiopharmacokinetic modeling of technetium-99m-galactosyl-neoglycoalbumin. J Nucl Med. 1991 Jun;32(6):1169–1176. [PubMed] [Google Scholar]
  19. Vera D. R., Woodle E. S., Stadalnik R. C. Kinetic sensitivity of a receptor-binding radiopharmaceutical: technetium-99m galactosyl-neoglycoalbumin. J Nucl Med. 1989 Sep;30(9):1519–1530. [PubMed] [Google Scholar]
  20. Virgolini I., Angelberger P., Müller C., O'Grady J., Sinzinger H. 99mTc-neoglycoalbumin (NGA)-binding to human hepatic binding protein (HBP) in vitro. Br J Clin Pharmacol. 1990 Feb;29(2):207–214. doi: 10.1111/j.1365-2125.1990.tb03621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Virgolini I., Müller C., Angelberger P., Höbart J., Bergmann H., Sinzinger H. Functional liver imaging with 99Tcm-galactosyl-neoglycoalbumin (NGA) in alcoholic liver cirrhosis and liver fibrosis. Nucl Med Commun. 1991 Jun;12(6):507–517. doi: 10.1097/00006231-199106000-00005. [DOI] [PubMed] [Google Scholar]
  22. Virgolini I., Müller C., Höbart J., Scheithauer W., Angelberger P., Bergmann H., O'Grady J., Sinzinger H. Liver function in acute viral hepatitis as determined by a hepatocyte-specific ligand: 99mTc-galactosyl-neoglycoalbumin. Hepatology. 1992 Apr;15(4):593–598. doi: 10.1002/hep.1840150407. [DOI] [PubMed] [Google Scholar]
  23. Virgolini I., Müller C., Klepetko W., Angelberger P., Bergmann H., O'Grady J., Sinzinger H. Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a hepatocyte specific galactosylated radioligand. Br J Cancer. 1990 Jun;61(6):937–941. doi: 10.1038/bjc.1990.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagner H. N., Jr, Burns H. D., Dannals R. F., Wong D. F., Langstrom B., Duelfer T., Frost J. J., Ravert H. T., Links J. M., Rosenbloom S. B. Imaging dopamine receptors in the human brain by positron tomography. Science. 1983 Sep 23;221(4617):1264–1266. doi: 10.1126/science.6604315. [DOI] [PubMed] [Google Scholar]
  25. Waring M. J., González A., Jiménez A., Vázquez D. Intercalative binding to DNA of antitumour drugs derived from 3-nitro-1,8-naphthalic acid. Nucleic Acids Res. 1979 Sep 11;7(1):217–230. doi: 10.1093/nar/7.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woodle E. S., Vera D. R., Stadalnik R. C., Ward R. E. Tc-NGA imaging in liver transplantation: preclinical studies. Surgery. 1987 Jul;102(1):55–62. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES