Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 May;67(5):1090–1097. doi: 10.1038/bjc.1993.200

Mortality of a cohort of French uranium miners exposed to relatively low radon concentrations.

M Tirmarche 1, A Raphalen 1, F Allin 1, J Chameaud 1, P Bredon 1
PMCID: PMC1968425  PMID: 8494704

Abstract

A cohort mortality study has been performed on French uranium miners having experienced more than 2 years of underground mining, with first radon exposure between 1946 and 1972. Vital status has been ascertained from the date of entry to the 31 December 1985 for 99% of the members of this cohort; causes of death are identified for 95.5% of the decedents. The different causes of death are compared to the age specific national death rates by indirect standardisation and expressed by standardised mortality ratios (SMR). A statistically significant excess has been observed for lung and laryngeal cancer deaths. The Poisson trend test shows a statistically significant trend for the risk of lung cancer death as a function of cumulative radon exposure, assuming a lag time of 5 years; for laryngeal cancer no significant trend has been observed. Poisson regression modelling has been applied to the following exposure groups: < 10 WLM (Working Level Month); 10-49 WLM; 50-149 WLM; 150-299 WLM; > or = 300 WLM; it indicates an increase in the SMR for lung cancer of 0.6% per WLM (standard error: 0.4%) with an estimated intercept at 0 WLM of 1.68 (standard error: 0.4). The distinction of two working periods, differing by their annual radon concentration (before/since 1956) does not modify this exposure-response relationship. This coefficient of risk per unit of exposure is lower than in most of the other uranium miners' studies but it lies in the range of the evaluation of the ICRP 50 committee and the 'BEIR IV' report of the U.S. National Academy of Science. It is observed in a cohort having experienced low cumulative exposure to radon (mean: 70 WLM) spread over a mean duration of 14.5 years. Even though occupational exposure in mines differs in several particulars from domestic exposure, this study presents characteristics of low annual exposure comparable to radon gas concentrations in houses of 500-1000 Bq.m-3, and will contribute to the evaluation of cancer risk for the public.

Full text

PDF
1090

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer V. E., Wagoner J. K., Lundin F. E. Lung cancer among uranium miners in the United States. Health Phys. 1973 Oct;25(4):351–371. doi: 10.1097/00004032-197310000-00001. [DOI] [PubMed] [Google Scholar]
  2. Cross F. T., Palmer R. F., Filipy R. E., Dagle G. E., Stuart B. O. Carcinogenic effects of radon daughters, uranium ore dust and cigarette smoke in beagle dogs. Health Phys. 1982 Jan;42(1):33–52. doi: 10.1097/00004032-198201000-00004. [DOI] [PubMed] [Google Scholar]
  3. Darby S. C., Doll R. Radiation and exposure rate. Nature. 1990 Apr 26;344(6269):824–824. doi: 10.1038/344824a0. [DOI] [PubMed] [Google Scholar]
  4. Hill C., Rezvani A., Kramar A. Comparaison de la mortalité d'une cohorte à la mortalité d'une population de référence. Principe, nombre de décès attendus nécessaire et puissance du test. Rev Epidemiol Sante Publique. 1984;32(5):330–335. [PubMed] [Google Scholar]
  5. Hirsch A. The fight against smoking in France. Eur Respir J. 1988 May;1(5):399–402. [PubMed] [Google Scholar]
  6. Hornung R. W., Meinhardt T. J. Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys. 1987 Apr;52(4):417–430. doi: 10.1097/00004032-198704000-00002. [DOI] [PubMed] [Google Scholar]
  7. Howe G. R., Nair R. C., Newcombe H. B., Miller A. B., Burch J. D., Abbatt J. D. Lung cancer mortality (1950-80) in relation to radon daughter exposure in a cohort of workers at the Eldorado Port Radium uranium mine: possible modification of risk by exposure rate. J Natl Cancer Inst. 1987 Dec;79(6):1255–1260. [PubMed] [Google Scholar]
  8. Kunz E., Sevc J., Placek V., Horácek J. Lung cancer in man in relation to different time distribution of radiation exposure. Health Phys. 1979 Jun;36(6):699–706. doi: 10.1097/00004032-197906000-00006. [DOI] [PubMed] [Google Scholar]
  9. Lubin J. H. Models for the analysis of radon-exposed populations. Yale J Biol Med. 1988 May-Jun;61(3):195–214. [PMC free article] [PubMed] [Google Scholar]
  10. Lubin J. H., Qiao Y. L., Taylor P. R., Yao S. X., Schatzkin A., Mao B. L., Rao J. Y., Xuan X. Z., Li J. Y. Quantitative evaluation of the radon and lung cancer association in a case control study of Chinese tin miners. Cancer Res. 1990 Jan 1;50(1):174–180. [PubMed] [Google Scholar]
  11. Morrison H. I., Semenciw R. M., Mao Y., Wigle D. T. Cancer mortality among a group of fluorspar miners exposed to radon progeny. Am J Epidemiol. 1988 Dec;128(6):1266–1275. doi: 10.1093/oxfordjournals.aje.a115080. [DOI] [PubMed] [Google Scholar]
  12. Radford E. P., Renard K. G. Lung cancer in Swedish iron miners exposed to low doses of radon daughters. N Engl J Med. 1984 Jun 7;310(23):1485–1494. doi: 10.1056/NEJM198406073102302. [DOI] [PubMed] [Google Scholar]
  13. Samet J. M., Pathak D. R., Morgan M. V., Key C. R., Valdivia A. A., Lubin J. H. Lung cancer mortality and exposure to radon progeny in a cohort of New Mexico underground uranium miners. Health Phys. 1991 Dec;61(6):745–752. doi: 10.1097/00004032-199112000-00005. [DOI] [PubMed] [Google Scholar]
  14. Sevc J., Kunz E., Tomásek L., Placek V., Horácek J. Cancer in man after exposure to Rn daughters. Health Phys. 1988 Jan;54(1):27–46. doi: 10.1097/00004032-198801000-00001. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES