Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Dec;68(6):1088–1096. doi: 10.1038/bjc.1993.486

cDNA transfection followed by the isolation of a MCF-7 breast cell line resistant to tamoxifen in vitro and in vivo.

M Toi 1, A L Harris 1, R Bicknell 1
PMCID: PMC1968663  PMID: 8260359

Abstract

A tamoxifen resistant cell line (clone 9) has been isolated from the tamoxifen sensitive, hormone responsive MCF-7 breast carcinoma cell line after transfection with mixed cDNA libraries, followed by tamoxifen selection in the presence of oestrogens. Transfection was confirmed by Southern analysis with vector probes. Clone 9 in several-fold more resistant to tamoxifen and other anti-oestrogens than wild type cells when cultured either as a monolayer or as colonies in soft agar but retains oestrogen receptors. Clone 9 was less responsive to 17-beta-oestradiol than were wild type MCF-7. In addition to showing in vitro tamoxifen resistance, clone 9 was also tamoxifen resistant in vivo when xenografted into the nude mouse. Culture medium conditioned by clone 9 cells stimulated quiescent cells of the same clone as well as wild type cells, whereas medium conditioned by wild type MCF-7 was inhibitory to both, suggesting that clone 9 may be secreting an autocrine growth factor. Clone 9 provides a novel model for further investigation of the mechanism of anti-oestrogen resistance that occurs without loss of oestrogen receptors. Preliminary results suggest that an autocrine growth stimulatory mechanism may be one pathway of such resistance.

Full text

PDF
1088

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezwoda W. R., Esser J. D., Dansey R., Kessel I., Lange M. The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer. 1991 Aug 15;68(4):867–872. doi: 10.1002/1097-0142(19910815)68:4<867::aid-cncr2820680432>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  2. Bronzert D. A., Greene G. L., Lippman M. E. Selection and characterization of a breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology. 1985 Oct;117(4):1409–1417. doi: 10.1210/endo-117-4-1409. [DOI] [PubMed] [Google Scholar]
  3. Clarke R., Brünner N., Katzenellenbogen B. S., Thompson E. W., Norman M. J., Koppi C., Paik S., Lippman M. E., Dickson R. B. Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo. Proc Natl Acad Sci U S A. 1989 May;86(10):3649–3653. doi: 10.1073/pnas.86.10.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke R., Dickson R. B., Brünner N. The process of malignant progression in human breast cancer. Ann Oncol. 1990 Nov;1(6):401–407. doi: 10.1093/oxfordjournals.annonc.a057790. [DOI] [PubMed] [Google Scholar]
  5. Colletta A. A., Wakefield L. M., Howell F. V., van Roozendaal K. E., Danielpour D., Ebbs S. R., Sporn M. B., Baum M. Anti-oestrogens induce the secretion of active transforming growth factor beta from human fetal fibroblasts. Br J Cancer. 1990 Sep;62(3):405–409. doi: 10.1038/bjc.1990.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cullen K. J., Lippman M. E., Chow D., Hill S., Rosen N., Zwiebel J. A. Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes associated with malignant progression. Mol Endocrinol. 1992 Jan;6(1):91–100. doi: 10.1210/mend.6.1.1310798. [DOI] [PubMed] [Google Scholar]
  7. Daly R. J., Harris W. H., Wang D. Y., Darbre P. D. Autocrine production of insulin-like growth factor II using an inducible expression system results in reduced estrogen sensitivity of MCF-7 human breast cancer cells. Cell Growth Differ. 1991 Sep;2(9):457–464. [PubMed] [Google Scholar]
  8. Dauvois S., Danielian P. S., White R., Parker M. G. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4037–4041. doi: 10.1073/pnas.89.9.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gottardis M. M., Jordan V. C. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res. 1988 Sep 15;48(18):5183–5187. [PubMed] [Google Scholar]
  10. Graham M. L., 2nd, Krett N. L., Miller L. A., Leslie K. K., Gordon D. F., Wood W. M., Wei L. L., Horwitz K. B. T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance. Cancer Res. 1990 Oct 1;50(19):6208–6217. [PubMed] [Google Scholar]
  11. Harris A. L., Cantwell B. M., Carmichael J., Dawes P., Robinson A., Farndon J., Wilson R. Phase II study of low dose aminoglutethimide 250 mg/day plus hydrocortisone in advanced postmenopausal breast cancer. Eur J Cancer Clin Oncol. 1989 Jul;25(7):1105–1111. doi: 10.1016/0277-5379(89)90396-9. [DOI] [PubMed] [Google Scholar]
  12. Harris A. L., Powles T. J., Smith I. E., Coombes R. C., Ford H. T., Gazet J. C., Harmer C. L., Morgan M., White H., Parsons C. A. Aminoglutethimide for the treatment of advanced postmenopausal breast cancer. Eur J Cancer Clin Oncol. 1983 Jan;19(1):11–17. doi: 10.1016/0277-5379(83)90390-5. [DOI] [PubMed] [Google Scholar]
  13. Johnston S. R., Dowsett M., Smith I. E. Towards a molecular basis for tamoxifen resistance in breast cancer. Ann Oncol. 1992 Jul;3(7):503–511. doi: 10.1093/oxfordjournals.annonc.a058251. [DOI] [PubMed] [Google Scholar]
  14. Kasid A., Lippman M. E., Papageorge A. G., Lowy D. R., Gelmann E. P. Transfection of v-rasH DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorigenicity. Science. 1985 May 10;228(4700):725–728. doi: 10.1126/science.4039465. [DOI] [PubMed] [Google Scholar]
  15. Knabbe C., Lippman M. E., Wakefield L. M., Flanders K. C., Kasid A., Derynck R., Dickson R. B. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987 Feb 13;48(3):417–428. doi: 10.1016/0092-8674(87)90193-0. [DOI] [PubMed] [Google Scholar]
  16. Leake R. E., Laing L., Calman K. C., Macbeth F. R., Crawford D., Smith D. C. Oestrogen-receptor status and endocrine therapy of breast cancer: response rates and status stability. Br J Cancer. 1981 Jan;43(1):59–66. doi: 10.1038/bjc.1981.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lien E. A., Solheim E., Lea O. A., Lundgren S., Kvinnsland S., Ueland P. M. Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res. 1989 Apr 15;49(8):2175–2183. [PubMed] [Google Scholar]
  18. Manni A. Endocrine therapy of metastatic breast cancer. J Endocrinol Invest. 1989 May;12(5):357–372. doi: 10.1007/BF03350007. [DOI] [PubMed] [Google Scholar]
  19. McGuire W. L., Chamness G. C., Fuqua S. A. Estrogen receptor variants in clinical breast cancer. Mol Endocrinol. 1991 Nov;5(11):1571–1577. doi: 10.1210/mend-5-11-1571. [DOI] [PubMed] [Google Scholar]
  20. Mulligan R. C., Berg P. Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2072–2076. doi: 10.1073/pnas.78.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murphy L. C., Dotzlaw H. Variant estrogen receptor mRNA species detected in human breast cancer biopsy samples. Mol Endocrinol. 1989 Apr;3(4):687–693. doi: 10.1210/mend-3-4-687. [DOI] [PubMed] [Google Scholar]
  22. Nawata H., Bronzert D., Lippman M. E. Isolation and characterization of a tamoxifen-resistant cell line derived from MCF-7 human breast cancer cells. J Biol Chem. 1981 May 25;256(10):5016–5021. [PubMed] [Google Scholar]
  23. Nicholson S., Halcrow P., Sainsbury J. R., Angus B., Chambers P., Farndon J. R., Harris A. L. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer. 1988 Dec;58(6):810–814. doi: 10.1038/bjc.1988.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicholson S., Sainsbury J. R., Halcrow P., Chambers P., Farndon J. R., Harris A. L. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet. 1989 Jan 28;1(8631):182–185. doi: 10.1016/s0140-6736(89)91202-6. [DOI] [PubMed] [Google Scholar]
  25. Osborne C. K., Coronado E. B., Kitten L. J., Arteaga C. I., Fuqua S. A., Ramasharma K., Marshall M., Li C. H. Insulin-like growth factor-II (IGF-II): a potential autocrine/paracrine growth factor for human breast cancer acting via the IGF-I receptor. Mol Endocrinol. 1989 Nov;3(11):1701–1709. doi: 10.1210/mend-3-11-1701. [DOI] [PubMed] [Google Scholar]
  26. Osborne C. K., Coronado E., Allred D. C., Wiebe V., DeGregorio M. Acquired tamoxifen resistance: correlation with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J Natl Cancer Inst. 1991 Oct 16;83(20):1477–1482. doi: 10.1093/jnci/83.20.1477. [DOI] [PubMed] [Google Scholar]
  27. Osborne C. K., Wiebe V. J., McGuire W. L., Ciocca D. R., DeGregorio M. W. Tamoxifen and the isomers of 4-hydroxytamoxifen in tamoxifen-resistant tumors from breast cancer patients. J Clin Oncol. 1992 Feb;10(2):304–310. doi: 10.1200/JCO.1992.10.2.304. [DOI] [PubMed] [Google Scholar]
  28. Pakdel F., Katzenellenbogen B. S. Human estrogen receptor mutants with altered estrogen and antiestrogen ligand discrimination. J Biol Chem. 1992 Feb 15;267(5):3429–3437. [PubMed] [Google Scholar]
  29. Sainsbury J. R., Farndon J. R., Needham G. K., Malcolm A. J., Harris A. L. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet. 1987 Jun 20;1(8547):1398–1402. doi: 10.1016/s0140-6736(87)90593-9. [DOI] [PubMed] [Google Scholar]
  30. Scott G. K., Kushner P., Vigne J. L., Benz C. C. Truncated forms of DNA-binding estrogen receptors in human breast cancer. J Clin Invest. 1991 Aug;88(2):700–706. doi: 10.1172/JCI115356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith I. E., Harris A. L., Morgan M., Ford H. T., Gazet J. C., Harmer C. L., White H., Parsons C. A., Villardo A., Walsh G. Tamoxifen versus aminoglutethimide in advanced breast carcinoma: a randomized cross-over trial. Br Med J (Clin Res Ed) 1981 Nov 28;283(6304):1432–1434. doi: 10.1136/bmj.283.6304.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith K., Fennelly J. A., Neal D. E., Hall R. R., Harris A. L. Characterization and quantitation of the epidermal growth factor receptor in invasive and superficial bladder tumors. Cancer Res. 1989 Nov 1;49(21):5810–5815. [PubMed] [Google Scholar]
  33. Sommers C. L., Papageorge A., Wilding G., Gelmann E. P. Growth properties and tumorigenesis of MCF-7 cells transfected with isogenic mutants of rasH. Cancer Res. 1990 Jan 1;50(1):67–71. [PubMed] [Google Scholar]
  34. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  35. Sukumar S., Carney W. P., Barbacid M. Independent molecular pathways in initiation and loss of hormone responsiveness of breast carcinomas. Science. 1988 Apr 22;240(4851):524–526. doi: 10.1126/science.3282307. [DOI] [PubMed] [Google Scholar]
  36. Taylor R. E., Powles T. J., Humphreys J., Bettelheim R., Dowsett M., Casey A. J., Neville A. M., Coombes R. C. Effects of endocrine therapy on steroid-receptor content of breast cancer. Br J Cancer. 1982 Jan;45(1):80–85. doi: 10.1038/bjc.1982.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Toi M., Bicknell R., Harris A. L. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res. 1992 Jan 15;52(2):275–279. [PubMed] [Google Scholar]
  38. Toi M., Nakamura T., Mukaida H., Wada T., Osaki A., Yamada H., Toge T., Niimoto M., Hattori T. Relationship between epidermal growth factor receptor status and various prognostic factors in human breast cancer. Cancer. 1990 May 1;65(9):1980–1984. doi: 10.1002/1097-0142(19900501)65:9<1980::aid-cncr2820650917>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  39. Valverius E. M., Velu T., Shankar V., Ciardiello F., Kim N., Salomon D. S. Over-expression of the epidermal growth factor receptor in human breast cancer cells fails to induce an estrogen-independent phenotype. Int J Cancer. 1990 Oct 15;46(4):712–718. doi: 10.1002/ijc.2910460427. [DOI] [PubMed] [Google Scholar]
  40. Wiebe V. J., Osborne C. K., McGuire W. L., DeGregorio M. W. Identification of estrogenic tamoxifen metabolite(s) in tamoxifen-resistant human breast tumors. J Clin Oncol. 1992 Jun;10(6):990–994. doi: 10.1200/JCO.1992.10.6.990. [DOI] [PubMed] [Google Scholar]
  41. Wright C., Nicholson S., Angus B., Sainsbury J. R., Farndon J., Cairns J., Harris A. L., Horne C. H. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992 Jan;65(1):118–121. doi: 10.1038/bjc.1992.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zugmaier G., Ennis B. W., Deschauer B., Katz D., Knabbe C., Wilding G., Daly P., Lippman M. E., Dickson R. B. Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol. 1989 Nov;141(2):353–361. doi: 10.1002/jcp.1041410217. [DOI] [PubMed] [Google Scholar]
  43. van Agthoven T., van Agthoven T. L., Portengen H., Foekens J. A., Dorssers L. C. Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells. Cancer Res. 1992 Sep 15;52(18):5082–5088. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES