Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Feb;69(2):279–285. doi: 10.1038/bjc.1994.52

Effectiveness of HB2 (anti-CD7)--saporin immunotoxin in an in vivo model of human T-cell leukaemia developed in severe combined immunodeficient mice.

B J Morland 1, J Barley 1, D Boehm 1, S U Flavell 1, N Ghaleb 1, J A Kohler 1, K Okayama 1, B Wilkins 1, D J Flavell 1
PMCID: PMC1968696  PMID: 7507691

Abstract

The transplantation of the human T-cell acute lymphoblastic leukaemia (T-ALL) cell line HSB-2 into severe combined immunodeficient (SCID) mice was found to produce a disseminated pattern of leukaemia similar to that seen in man. The intravenous injection of 10(7) HSB-2 cells was associated with a universally fatal leukaemia. Histopathological examination of animals revealed the spread of leukaemia initially from bone marrow to involve all major organs including the meninges. An immunotoxin (HB2-Sap) was constructed by conjugating the anti-CD7 MAb HB2 to the ribosome-inactivating protein saporin. An in vitro protein synthesis inhibition assay revealed specific delivery of HB2-Sap immunotoxin (IT) to CD7+ HSB-2 target cells with an IC50 of 4.5 pM. When SCID mice were injected with 10(6) HSB-2 cells and then treated 8 days later with a single intravenous dose of 10 micrograms of immunotoxin there was a significant therapeutic effect evidenced by the numbers of animals surviving in the therapy group compared with untreated controls (chi 2 = 5.348, P = 0.021). These results demonstrate the useful application of human leukaemia xenografts in SCID mice and the potential therapeutic effect of an anti-CD7 immunotoxin in human T-ALL.

Full text

PDF
279

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. A., Pothier L., Flowers A., Lazarus H., Farber S., Foley G. E. The question of stemlines in human acute leukemia. Comparison of cells isolated in vitro and in vivo from a patient with acute lymphoblastic leukemia. Exp Cell Res. 1970 Sep;62(1):5–10. doi: 10.1016/0014-4827(79)90504-4. [DOI] [PubMed] [Google Scholar]
  2. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  3. Cannon M. J., Pisa P., Fox R. I., Cooper N. R. Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest. 1990 Apr;85(4):1333–1337. doi: 10.1172/JCI114573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cesano A., O'Connor R., Lange B., Finan J., Rovera G., Santoli D. Homing and progression patterns of childhood acute lymphoblastic leukemias in severe combined immunodeficiency mice. Blood. 1991 Jun 1;77(11):2463–2474. [PubMed] [Google Scholar]
  5. Charley M. R., Tharp M., Locker J., Deng J. S., Goslen J. B., Mauro T., McCoy P., Abell E., Jegasothy B. Establishment of a human cutaneous T-cell lymphoma in C.B-17 SCID mice. J Invest Dermatol. 1990 Mar;94(3):381–384. doi: 10.1111/1523-1747.ep12874500. [DOI] [PubMed] [Google Scholar]
  6. Dillman R. O., Johnson D. E., Shawler D. L., Halpern S. E., Leonard J. E., Hagan P. L. Athymic mouse model of a human T-cell tumor. Cancer Res. 1985 Nov;45(11 Pt 2):5632–5636. [PubMed] [Google Scholar]
  7. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  8. Fishwild D. M., Aberle S., Bernhard S. L., Kung A. H. Efficacy of an anti-CD7-ricin A chain immunoconjugate in a novel murine model of human T-cell leukemia. Cancer Res. 1992 Jun 1;52(11):3056–3062. [PubMed] [Google Scholar]
  9. Flavell D. J., Cooper S., Morland B., Flavell S. U. Characteristics and performance of a bispecific F (ab'gamma)2 antibody for delivering saporin to a CD7+ human acute T-cell leukaemia cell line. Br J Cancer. 1991 Aug;64(2):274–280. doi: 10.1038/bjc.1991.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fogh J., Fogh J. M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977 Jul;59(1):221–226. doi: 10.1093/jnci/59.1.221. [DOI] [PubMed] [Google Scholar]
  11. Ghetie M. A., Richardson J., Tucker T., Jones D., Uhr J. W., Vitetta E. S. Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int J Cancer. 1990 Mar 15;45(3):481–485. doi: 10.1002/ijc.2910450318. [DOI] [PubMed] [Google Scholar]
  12. Giovanella B. C., Stehlin J. S., Jr, Williams L. J., Jr, Lee S. S., Shepard R. C. Heterotransplantation of human cancers into nude mice: a model system for human cancer chemotherapy. Cancer. 1978 Nov;42(5):2269–2281. doi: 10.1002/1097-0142(197811)42:5<2269::aid-cncr2820420527>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  13. Grossbard M. L., Freedman A. S., Ritz J., Coral F., Goldmacher V. S., Eliseo L., Spector N., Dear K., Lambert J. M., Blättler W. A. Serotherapy of B-cell neoplasms with anti-B4-blocked ricin: a phase I trial of daily bolus infusion. Blood. 1992 Feb 1;79(3):576–585. [PubMed] [Google Scholar]
  14. Jansen B., Uckun F. M., Jaszcz W. B., Kersey J. H. Establishment of a human t(4;11) leukemia in severe combined immunodeficient mice and successful treatment using anti-CD19 (B43)-pokeweed antiviral protein immunotoxin. Cancer Res. 1992 Jan 15;52(2):406–412. [PubMed] [Google Scholar]
  15. Jansen B., Vallera D. A., Jaszcz W. B., Nguyen D., Kersey J. H. Successful treatment of human acute T-cell leukemia in SCID mice using the anti-CD7-deglycosylated ricin A-chain immunotoxin DA7. Cancer Res. 1992 Mar 1;52(5):1314–1321. [PubMed] [Google Scholar]
  16. Kamel-Reid S., Dick J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science. 1988 Dec 23;242(4886):1706–1709. doi: 10.1126/science.2904703. [DOI] [PubMed] [Google Scholar]
  17. Kamel-Reid S., Letarte M., Doedens M., Greaves A., Murdoch B., Grunberger T., Lapidot T., Thorner P., Freedman M. H., Phillips R. A. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood. 1991 Dec 1;78(11):2973–2981. [PubMed] [Google Scholar]
  18. Kamel-Reid S., Letarte M., Sirard C., Doedens M., Grunberger T., Fulop G., Freedman M. H., Phillips R. A., Dick J. E. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science. 1989 Dec 22;246(4937):1597–1600. doi: 10.1126/science.2595371. [DOI] [PubMed] [Google Scholar]
  19. Laurent G., Pris J., Farcet J. P., Carayon P., Blythman H., Casellas P., Poncelet P., Jansen F. K. Effects of therapy with T101 ricin A-chain immunotoxin in two leukemia patients. Blood. 1986 Jun;67(6):1680–1687. [PubMed] [Google Scholar]
  20. Leonard J. E., Johnson D. E., Shawler D. L., Dillman R. O. Inhibition of human T-cell tumor growth by T101-ricin A-chain in an athymic mouse model. Cancer Res. 1988 Sep 1;48(17):4862–4867. [PubMed] [Google Scholar]
  21. McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
  22. McCune J. M., Namikawa R., Shih C. C., Rabin L., Kaneshima H. Suppression of HIV infection in AZT-treated SCID-hu mice. Science. 1990 Feb 2;247(4942):564–566. doi: 10.1126/science.2300816. [DOI] [PubMed] [Google Scholar]
  23. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  24. Mosier D. E. Immunodeficient mice xenografted with human lymphoid cells: new models for in vivo studies of human immunobiology and infectious diseases. J Clin Immunol. 1990 Jul;10(4):185–191. doi: 10.1007/BF00918650. [DOI] [PubMed] [Google Scholar]
  25. Myers C. D., Thorpe P. E., Ross W. C., Cumber A. J., Katz F. E., Tax W., Greaves M. F. An immunotoxin with therapeutic potential in T cell leukemia: WT1-ricin A. Blood. 1984 May;63(5):1178–1185. [PubMed] [Google Scholar]
  26. Namikawa R., Kaneshima H., Lieberman M., Weissman I. L., McCune J. M. Infection of the SCID-hu mouse by HIV-1. Science. 1988 Dec 23;242(4886):1684–1686. doi: 10.1126/science.3201256. [DOI] [PubMed] [Google Scholar]
  27. Purtilo D. T., Falk K., Pirruccello S. J., Nakamine H., Kleveland K., Davis J. R., Okano M., Taguchi Y., Sanger W. G., Beisel K. W. SCID mouse model of Epstein-Barr virus-induced lymphomagenesis of immunodeficient humans. Int J Cancer. 1991 Feb 20;47(4):510–517. doi: 10.1002/ijc.2910470407. [DOI] [PubMed] [Google Scholar]
  28. Ramakrishnan S., Houston L. L. Inhibition of human acute lymphoblastic leukemia cells by immunotoxins: potentiation by chloroquine. Science. 1984 Jan 6;223(4631):58–61. doi: 10.1126/science.6318313. [DOI] [PubMed] [Google Scholar]
  29. Reddy S., Piccione D., Takita H., Bankert R. B. Human lung tumor growth established in the lung and subcutaneous tissue of mice with severe combined immunodeficiency. Cancer Res. 1987 May 1;47(9):2456–2460. [PubMed] [Google Scholar]
  30. Rowe M., Young L. S., Crocker J., Stokes H., Henderson S., Rickinson A. B. Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med. 1991 Jan 1;173(1):147–158. doi: 10.1084/jem.173.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stirpe F., Gasperi-Campani A., Barbieri L., Falasca A., Abbondanza A., Stevens W. A. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J. 1983 Dec 15;216(3):617–625. doi: 10.1042/bj2160617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thorpe P. E., Brown A. N., Bremner J. A., Jr, Foxwell B. M., Stirpe F. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst. 1985 Jul;75(1):151–159. [PubMed] [Google Scholar]
  33. Uckun F. M., Chelstrom L. M., Finnegan D., Tuel-Ahlgren L., Manivel C., Irvin J. D., Myers D. E., Gunther R. Effective immunochemotherapy of CALLA+C mu+ human pre-B acute lymphoblastic leukemia in mice with severe combined immunodeficiency using B43 (anti-CD19) pokeweed antiviral protein immunotoxin plus cyclophosphamide. Blood. 1992 Jun 15;79(12):3116–3129. [PubMed] [Google Scholar]
  34. Uckun F. M., Kersey J. H., Vallera D. A., Ledbetter J. A., Weisdorf D., Myers D. E., Haake R., Ramsay N. K. Autologous bone marrow transplantation in high-risk remission T-lineage acute lymphoblastic leukemia using immunotoxins plus 4-hydroperoxycyclophosphamide for marrow purging. Blood. 1990 Nov 1;76(9):1723–1733. [PubMed] [Google Scholar]
  35. Uckun F. M., Manivel C., Arthur D., Chelstrom L. M., Finnegan D., Tuel-Ahlgren L., Irvin J. D., Myers D. E., Gunther R. In vivo efficacy of B43 (anti-CD19)-pokeweed antiviral protein immunotoxin against human pre-B cell acute lymphoblastic leukemia in mice with severe combined immunodeficiency. Blood. 1992 May 1;79(9):2201–2214. [PubMed] [Google Scholar]
  36. Vallera D. A., Ash R. C., Zanjani E. D., Kersey J. H., LeBien T. W., Beverley P. C., Neville D. M., Jr, Youle R. J. Anti-T-cell reagents for human bone marrow transplantation: ricin linked to three monoclonal antibodies. Science. 1983 Nov 4;222(4623):512–515. doi: 10.1126/science.6353579. [DOI] [PubMed] [Google Scholar]
  37. Vitetta E. S., Stone M., Amlot P., Fay J., May R., Till M., Newman J., Clark P., Collins R., Cunningham D. Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res. 1991 Aug 1;51(15):4052–4058. [PubMed] [Google Scholar]
  38. Waller E. K., Kamel O. W., Cleary M. L., Majumdar A. S., Schick M. R., Lieberman M., Weissman I. L. Growth of primary T-cell non-Hodgkin's lymphomata in SCID-hu mice: requirement for a human lymphoid microenvironment. Blood. 1991 Nov 15;78(10):2650–2665. [PubMed] [Google Scholar]
  39. Watanabe S., Shimosato Y., Kameya T., Kuroki M., Kitahara T., Minato K., Shimoyama M. Leukemic distribution of a human acute lymphocytic leukemia cell line (Ichikawa strain) in nude mice conditioned with whole-body irradiation. Cancer Res. 1978 Oct;38(10):3494–3498. [PubMed] [Google Scholar]
  40. Watanabe S., Shimosato Y., Kuroki M., Sato Y., Nakajima T. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice. Cancer Res. 1980 Jul;40(7):2588–2595. [PubMed] [Google Scholar]
  41. Weil-Hillman G., Uckun F. M., Manske J. M., Vallera D. A. Combined immunochemotherapy of human solid tumors in nude mice. Cancer Res. 1987 Jan 15;47(2):579–585. [PubMed] [Google Scholar]
  42. Youle R. J., Neville D. M., Jr Kinetics of protein synthesis inactivation by ricin-anti-Thy 1.1 monoclonal antibody hybrids. Role of the ricin B subunit demonstrated by reconstitution. J Biol Chem. 1982 Feb 25;257(4):1598–1601. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES