Abstract
Pancreatic ductal adenocarcinomas are characterised by a dense connective tissue reaction. To test the hypothesis that stroma components are synthesised and produced by the tumour cells themselves, eight cell lines as well as six xenografted tumours from human ductal adenocarcinomas of the pancreas were examined for the expression of extracellular matrix proteins (ECM), using cDNA probes and antibodies to collagen types I, III and IV, vitronectin, fibronectin, undulin and laminin. All tumour cell lines (CAPAN-1, CAPAN-2, AsPC-1, BxPC-3, PANC-1, PaCa-2, PaCa-3, PaCa-44) and xenografted human pancreatic tumours expressed at least one of the examined ECM at the RNA (collagen type IV > laminin = fibronectin = vitronectin > collagen type III > undulin > collagen type I) or protein level (collagen type IV = collagen type III > vitronectin > laminin > collagen type I = fibronectin > undulin). In nude mouse tumours expression of laminin and collagen I was most pronounced in well-differentiated carcinomas. In a few tumours, collagen type III, vitronectin and undulin were expressed on the luminal side of the neoplastic glands, suggesting loss of normal polar differentiation. Incubation with fetal calf serum modulated ECM RNA levels to a varying extent in all but one cell line (AsPC-1). The results suggest that human pancreatic ductal adenocarcinomas cells are capable of synthesising and producing extracellular matrix proteins in vitro and in vivo, but that the extent and pattern of ECM expression differs between the various tumours and conditions tested.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alitalo K., Keski-Oja J., Vaheri A. Extracellular matrix proteins characterize human tumor cell lines. Int J Cancer. 1981 Jun 15;27(6):755–761. doi: 10.1002/ijc.2910270605. [DOI] [PubMed] [Google Scholar]
- Barsky S. H., Siegal G. P., Jannotta F., Liotta L. A. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest. 1983 Aug;49(2):140–147. [PubMed] [Google Scholar]
- Bissell M. J., Hall H. G., Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982 Nov 7;99(1):31–68. doi: 10.1016/0022-5193(82)90388-5. [DOI] [PubMed] [Google Scholar]
- Bowles N. E., Richardson P. J., Olsen E. G., Archard L. C. Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet. 1986 May 17;1(8490):1120–1123. doi: 10.1016/s0140-6736(86)91837-4. [DOI] [PubMed] [Google Scholar]
- Bätge B., Bosslet K., Sedlacek H. H., Kern H. F., Klöppel G. Monoclonal antibodies against CEA-related components discriminate between pancreatic duct type carcinomas and nonneoplastic duct lesions as well as nonduct type neoplasias. Virchows Arch A Pathol Anat Histopathol. 1986;408(4):361–374. doi: 10.1007/BF00707694. [DOI] [PubMed] [Google Scholar]
- Chen Y. F., Pan G. Z., Hou X., Liu T. H., Chen J., Yanaihara C., Yanaihara N. Epidermal growth factor and its receptors in human pancreatic carcinoma. Pancreas. 1990 May;5(3):278–283. doi: 10.1097/00006676-199005000-00006. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cleutjens J. P., Havenith M. G., Beek C., Vallinga M., Ten Kate J., Bosman F. T. Origin of basement membrane type IV collagen in xenografted human epithelial tumor cell lines. Am J Pathol. 1990 May;136(5):1165–1172. [PMC free article] [PubMed] [Google Scholar]
- Damjanov I., Damjanov N., Knowles B. B., Engvall E. Origin of laminin in the extracellular matrix of human tumor xenografts in nude mice. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;49(1):45–52. doi: 10.1007/BF02912083. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Giovanella B. C., Fogh J. The nude mouse in cancer research. Adv Cancer Res. 1985;44:69–120. doi: 10.1016/s0065-230x(08)60026-3. [DOI] [PubMed] [Google Scholar]
- Haberern-Blood C., Liotta L. A., Rao C. N., Kupchik H. Z. Laminin expression by human pancreatic carcinoma cells in the nude mouse and in culture. J Natl Cancer Inst. 1987 Oct;79(4):891–898. [PubMed] [Google Scholar]
- Haberern C. L., Kupchik H. Z. Diversity of adhesion to basement membrane components of human pancreatic adenocarcinomas. Cancer Res. 1985 Nov;45(11 Pt 1):5246–5251. [PubMed] [Google Scholar]
- Haglund C., Lindgren J., Roberts P. J., Nordling S. Gastrointestinal cancer-associated antigen CA 19-9 in histological specimens of pancreatic tumours and pancreatitis. Br J Cancer. 1986 Feb;53(2):189–195. doi: 10.1038/bjc.1986.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haglund C., Roberts P. J., Nordling S., Ekblom P. Expression of laminin in pancreatic neoplasms and in chronic pancreatitis. Am J Surg Pathol. 1984 Sep;8(9):669–676. doi: 10.1097/00000478-198409000-00006. [DOI] [PubMed] [Google Scholar]
- Haglund C., Roberts P. J., Nordling S. Expression of laminin in benign and malignant sclerosing lesions of extrahepatic bile ducts. J Clin Pathol. 1989 Sep;42(9):927–930. doi: 10.1136/jcp.42.9.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinze H., Arnold H. H., Fischer D., Kruppa J. The primary structure of the human ribosomal protein S6 derived from a cloned cDNA. J Biol Chem. 1988 Mar 25;263(9):4139–4144. [PubMed] [Google Scholar]
- Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
- Just M., Herbst H., Hummel M., Dürkop H., Tripier D., Stein H., Schuppan D. Undulin is a novel member of the fibronectin-tenascin family of extracellular matrix glycoproteins. J Biol Chem. 1991 Sep 15;266(26):17326–17332. [PubMed] [Google Scholar]
- Kallioinen M., Autio-Harmainen H., Dammert K., Risteli J., Risteli L. Discontinuity of the basement membrane in fibrosing basocellular carcinomas and basosquamous carcinomas of the skin: an immunohistochemical study with human laminin and type IV collagen antibodies. J Invest Dermatol. 1984 Mar;82(3):248–251. doi: 10.1111/1523-1747.ep12260190. [DOI] [PubMed] [Google Scholar]
- Kalthoff H., Roeder C., Humburg I., Thiele H. G., Greten H., Schmiegel W. Modulation of platelet-derived growth factor A- and B-chain/c-sis mRNA by tumor necrosis factor and other agents in adenocarcinoma cells. Oncogene. 1991 Jun;6(6):1015–1021. [PubMed] [Google Scholar]
- Kern H. F., Röher H. D., von Bülow M., Klöppel G. Fine structure of three major grades of malignancy of human pancreatic adenocarcinoma. Pancreas. 1987;2(1):2–13. doi: 10.1097/00006676-198701000-00002. [DOI] [PubMed] [Google Scholar]
- Klöppel G., Lingenthal G., von Bülow M., Kern H. F. Histological and fine structural features of pancreatic ductal adenocarcinomas in relation to growth and prognosis: studies in xenografted tumours and clinico-histopathological correlation in a series of 75 cases. Histopathology. 1985 Aug;9(8):841–856. doi: 10.1111/j.1365-2559.1985.tb02870.x. [DOI] [PubMed] [Google Scholar]
- Korc M. Growth factors and pancreatic cancer. Int J Pancreatol. 1991 Summer;9:87–91. doi: 10.1007/BF02925583. [DOI] [PubMed] [Google Scholar]
- Kyriazis A. P., Kyriazis A. A., Scarpelli D. G., Fogh J., Rao M. S., Lepera R. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. Am J Pathol. 1982 Feb;106(2):250–260. [PMC free article] [PubMed] [Google Scholar]
- Lemoine N. R., Hall P. A. Growth factors and oncogenes in pancreatic cancer. Baillieres Clin Gastroenterol. 1990 Dec;4(4):815–832. doi: 10.1016/0950-3528(90)90021-8. [DOI] [PubMed] [Google Scholar]
- Liehr R. M., Melnykovych G., Solomon T. E. Growth effects of regulatory peptides on human pancreatic cancer lines PANC-1 and MIA PaCa-2. Gastroenterology. 1990 Jun;98(6):1666–1674. doi: 10.1016/0016-5085(90)91105-f. [DOI] [PubMed] [Google Scholar]
- Lipkin W. I., Battenberg E. L., Bloom F. E., Oldstone M. B. Viral infection of neurons can depress neurotransmitter mRNA levels without histologic injury. Brain Res. 1988 Jun 7;451(1-2):333–339. doi: 10.1016/0006-8993(88)90779-2. [DOI] [PubMed] [Google Scholar]
- Löhr J. M., Oldstone M. B. Detection of cytomegalovirus nucleic acid sequences in pancreas in type 2 diabetes. Lancet. 1990 Sep 15;336(8716):644–648. doi: 10.1016/0140-6736(90)92145-8. [DOI] [PubMed] [Google Scholar]
- Löhr M., Müller M. K., Goebell H., Klöppel G. Prostaglandin analogue protects pancreatic B-cells against cyclosporin A toxicity. Experientia. 1989 Apr 15;45(4):352–355. doi: 10.1007/BF01957475. [DOI] [PubMed] [Google Scholar]
- Mahlbacher V., Sewing A., Elsässer H. P., Kern H. F. Hyaluronan is a secretory product of human pancreatic adenocarcinoma cells. Eur J Cell Biol. 1992 Jun;58(1):28–34. [PubMed] [Google Scholar]
- Mai M., Brune K., Jacoby B., Kern H. F., Mollenhauer J. Laminin interactions with ductal pancreatic adenocarcinoma cells: identification of laminin- and collagen-binding proteins. J Cell Sci. 1990 Jan;95(Pt 1):65–74. doi: 10.1242/jcs.95.1.65. [DOI] [PubMed] [Google Scholar]
- Mollenhauer J., Roether I., Kern H. F. Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas. 1987;2(1):14–24. doi: 10.1097/00006676-198701000-00003. [DOI] [PubMed] [Google Scholar]
- Mäkelä J. K., Raassina M., Virta A., Vuorio E. Human pro alpha 1(I) collagen: cDNA sequence for the C-propeptide domain. Nucleic Acids Res. 1988 Jan 11;16(1):349–349. doi: 10.1093/nar/16.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen D., Nagayoshi T., Fazio M., Peltonen J., Jaakkola S., Sanborn D., Sasaki T., Kuivaniemi H., Chu M. L., Deutzmann R. Human laminin: cloning and sequence analysis of cDNAs encoding A, B1 and B2 chains, and expression of the corresponding genes in human skin and cultured cells. Lab Invest. 1989 Jun;60(6):772–782. [PubMed] [Google Scholar]
- Pihlajaniemi T., Tryggvason K., Myers J. C., Kurkinen M., Lebo R., Cheung M. C., Prockop D. J., Boyd C. D. cDNA clones coding for the pro-alpha1(IV) chain of human type IV procollagen reveal an unusual homology of amino acid sequences in two halves of the carboxyl-terminal domain. J Biol Chem. 1985 Jun 25;260(12):7681–7687. [PubMed] [Google Scholar]
- Rafiee P., Ho S. B., Bresalier R. S., Bloom E. J., Kim J. H., Kim Y. S. Characterization of the cytokeratins of human colonic, pancreatic, and gastric adenocarcinoma cell lines. Pancreas. 1992;7(2):123–131. doi: 10.1097/00006676-199203000-00001. [DOI] [PubMed] [Google Scholar]
- Regulation of growth and differentiation in pancreatic cancer. Bethesda, Maryland, September 19 and 20, 1988. Pancreas. 1989;4(2):256–275. doi: 10.1097/00006676-198904000-00016. [DOI] [PubMed] [Google Scholar]
- Sandberg M., Vuorio E. Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization. J Cell Biol. 1987 Apr;104(4):1077–1084. doi: 10.1083/jcb.104.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
- Seiffert D., Keeton M., Eguchi Y., Sawdey M., Loskutoff D. J. Detection of vitronectin mRNA in tissues and cells of the mouse. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9402–9406. doi: 10.1073/pnas.88.21.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell. 1979 Mar;16(3):675–685. doi: 10.1016/0092-8674(79)90040-0. [DOI] [PubMed] [Google Scholar]
- Trautmann B., Schlitt H. J., Hahn E. G., Löhr M. Isolation, culture, and characterization of human pancreatic duct cells. Pancreas. 1993 Mar;8(2):248–254. doi: 10.1097/00006676-199303000-00017. [DOI] [PubMed] [Google Scholar]
- Uscanga L., Kennedy R. H., Stocker S., Grimaud J. A., Sarles H. Immunolocalization of collagen types, laminin and fibronectin in the normal human pancreas. Digestion. 1984;30(3):158–164. doi: 10.1159/000199100. [DOI] [PubMed] [Google Scholar]
- Zetter B. R. The cellular basis of site-specific tumor metastasis. N Engl J Med. 1990 Mar 1;322(9):605–612. doi: 10.1056/NEJM199003013220907. [DOI] [PubMed] [Google Scholar]
- van den Hooff A. Connective tissue changes in cancer. Int Rev Connect Tissue Res. 1983;10:395–432. doi: 10.1016/b978-0-12-363710-9.50013-7. [DOI] [PubMed] [Google Scholar]




