Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Mar;69(3):546–549. doi: 10.1038/bjc.1994.99

Flow cytometric analysis of S-phase fraction in breast carcinomas using gating on cells containing cytokeratin. South East Sweden Breast Cancer Group.

S Wingren 1, O Stål 1, B Nordenskjöld 1
PMCID: PMC1968862  PMID: 7510119

Abstract

We investigated distant recurrence and S-phase fraction (SPF), estimated by flow cytometry with and without selection of the epithelial cell population, in 201 stage II breast carcinomas. The tumour tissue was disintegrated mechanically by scissors and one part of the cell suspension was treated with a detergent-trypsin method for single-parameter analysis, and the other part, for immunological selection of epithelial cells, was incubated with a monoclonal antibody (CAM 5.2) recognising cytokeratins 8 and 18 and a secondary fluorescein isothiocyanate-labelled antibody. DNA was stained with propidium iodide. In order to compare the methods, statistical analysis was performed on the 152 tumours with S-phase fraction estimated by both methods. Sixty-five tumours were diploid, 81 were aneuploid and six tumours had different ploidy determined by the two methods. Using univariate regression analysis, SPF of the epithelial cell population predicted recurrence more effectively than SPF from single-parameter analysis. In multivariate regression analysis, SPF of the cytokeratin-containing population added significant prognostic information to the SPF of the non-selected cells. We concluded that the use of flow cytometric selection of epithelial breast carcinoma cells enhances the predictability value of SPF.

Full text

PDF
546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam S. M., Whitford P., Cushley W., George W. D., Campbell A. M. Aneuploid subpopulations in tumour-invaded lymph nodes from breast cancer patients. Eur J Cancer. 1992;28(2-3):357–362. doi: 10.1016/s0959-8049(05)80053-x. [DOI] [PubMed] [Google Scholar]
  2. Altman D. G. Categorising continuous variables. Br J Cancer. 1991 Nov;64(5):975–975. doi: 10.1038/bjc.1991.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baisch H., Göhde W., Linden W. A. Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Radiat Environ Biophys. 1975 Jun 13;12(1):31–39. doi: 10.1007/BF02339807. [DOI] [PubMed] [Google Scholar]
  4. Clark G. M., Dressler L. G., Owens M. A., Pounds G., Oldaker T., McGuire W. L. Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N Engl J Med. 1989 Mar 9;320(10):627–633. doi: 10.1056/NEJM198903093201003. [DOI] [PubMed] [Google Scholar]
  5. Clark G. M., Wenger C. R., Beardslee S., Owens M. A., Pounds G., Oldaker T., Vendely P., Pandian M. R., Harrington D., McGuire W. L. How to integrate steroid hormone receptor, flow cytometric, and other prognostic information in regard to primary breast cancer. Cancer. 1993 Mar 15;71(6 Suppl):2157–2162. doi: 10.1002/1097-0142(19930315)71:6+<2157::aid-cncr2820711606>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  6. Ferrero M., Spyratos F., Le Doussal V., Desplaces A., Rouëssé J. Flow cytometric analysis of DNA content and keratins by using CK7, CK8, CK18, CK19, and KL1 monoclonal antibodies in benign and malignant human breast tumors. Cytometry. 1990;11(6):716–724. doi: 10.1002/cyto.990110609. [DOI] [PubMed] [Google Scholar]
  7. Gown A. M., Boyd H. C., Chang Y., Ferguson M., Reichler B., Tippens D. Smooth muscle cells can express cytokeratins of "simple" epithelium. Immunocytochemical and biochemical studies in vitro and in vivo. Am J Pathol. 1988 Aug;132(2):223–232. [PMC free article] [PubMed] [Google Scholar]
  8. Kallioniemi O. P., Hietanen T., Mattila J., Lehtinen M., Lauslahti K., Koivula T. Aneuploid DNA content and high S-phase fraction of tumour cells are related to poor prognosis in patients with primary breast cancer. Eur J Cancer Clin Oncol. 1987 Mar;23(3):277–282. doi: 10.1016/0277-5379(87)90071-x. [DOI] [PubMed] [Google Scholar]
  9. Klintenberg C., Stål O., Nordenskjöld B., Wallgren A., Arvidsson S., Skoog L. Proliferative index, cytosol estrogen receptor and axillary node status as prognostic predictors in human mammary carcinoma. Breast Cancer Res Treat. 1986;7 (Suppl):S99–106. [PubMed] [Google Scholar]
  10. Lewis W. E. Prognostic significance of flow cytometric DNA analysis in node-negative breast cancer patients. Cancer. 1990 May 15;65(10):2315–2320. doi: 10.1002/1097-0142(19900515)65:10<2315::aid-cncr2820651025>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  11. Makin C. A., Bobrow L. G., Bodmer W. F. Monoclonal antibody to cytokeratin for use in routine histopathology. J Clin Pathol. 1984 Sep;37(9):975–983. doi: 10.1136/jcp.37.9.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  13. Mygind H., Nielsen B., Moe D., Clausen H., Dabelsteen E., Clausen P. P. Antikeratin antibodies in routine diagnostic pathology. A comparison of 10 different commercial antikeratins. APMIS. 1988 Nov;96(11):1009–1022. [PubMed] [Google Scholar]
  14. Nagle R. B., Böcker W., Davis J. R., Heid H. W., Kaufmann M., Lucas D. O., Jarasch E. D. Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem. 1986 Jul;34(7):869–881. doi: 10.1177/34.7.2423579. [DOI] [PubMed] [Google Scholar]
  15. Osborn M., Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983 Apr;48(4):372–394. [PubMed] [Google Scholar]
  16. Stål O., Wingren S., Carstensen J., Rutqvist L. E., Skoog L., Klintenberg C., Nordenskjöld B. Prognostic value of DNA ploidy and S-phase fraction in relation to estrogen receptor content and clinicopathological variables in primary breast cancer. Eur J Cancer Clin Oncol. 1989 Feb;25(2):301–309. doi: 10.1016/0277-5379(89)90023-0. [DOI] [PubMed] [Google Scholar]
  17. Traweek S. T., Liu J., Battifora H. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am J Pathol. 1993 Apr;142(4):1111–1118. [PMC free article] [PubMed] [Google Scholar]
  18. Vindeløv L. L., Christensen I. J., Nissen N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]
  19. Visscher D. W., Zarbo R. J., Jacobsen G., Kambouris A., Talpos G., Sakr W., Crissman J. D. Multiparametric deoxyribonucleic acid and cell cycle analysis of breast carcinomas by flow cytometry. Clinicopathologic correlations. Lab Invest. 1990 Mar;62(3):370–378. [PubMed] [Google Scholar]
  20. Wetzels R. H., Kuijpers H. J., Lane E. B., Leigh I. M., Troyanovsky S. M., Holland R., van Haelst U. J., Ramaekers F. C. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol. 1991 Mar;138(3):751–763. [PMC free article] [PubMed] [Google Scholar]
  21. Zarbo R. J., Visscher D. W., Crissman J. D. Two-color multiparametric method for flow cytometric DNA analysis of carcinomas using staining for cytokeratin and leukocyte-common antigen. Anal Quant Cytol Histol. 1989 Dec;11(6):391–402. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES