Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Nov;176(21):6663–6671. doi: 10.1128/jb.176.21.6663-6671.1994

Bacillus subtilis CtaA is a heme-containing membrane protein involved in heme A biosynthesis.

B Svensson 1, L Hederstedt 1
PMCID: PMC197023  PMID: 7961419

Abstract

Heme A is a prosthetic group of many respiratory oxidases. It is synthesized from protoheme IX (heme B) seemingly with heme O as a stable intermediate. The Bacillus subtilis ctaA and ctaB genes are required for heme A and heme O synthesis, respectively (B. Svensson, M. Lübben, and L. Hederstedt, Mol. Microbiol. 10:193-201, 1993). Tentatively, CtaA is involved in the monooxygenation and oxidation of the methyl side group on porphyrin ring D in heme A synthesis from heme B. B. subtilis ctaA and ctaB on plasmids in both B. subtilis and Escherichia coli were found to result in a novel membrane-bound heme-containing protein with the characteristics of a low-spin b-type cytochrome. It can be reduced via the respiratory chain, and in the reduced state it shows light absorption maxima at 428, 528, and 558 nm and the alpha-band is split. Purified cytochrome isolated from both B. subtilis and E. coli membranes contained one polypeptide identified as CtaA by amino acid sequence analysis, about 0.2 mol of heme B per mol of polypeptide, and small amounts of heme A.

Full text

PDF
6663

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRETT J. The prosthetic group of cytochrome a2. Biochem J. 1956 Dec;64(4):626–639. doi: 10.1042/bj0640626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chepuri V., Gennis R. B. The use of gene fusions to determine the topology of all of the subunits of the cytochrome o terminal oxidase complex of Escherichia coli. J Biol Chem. 1990 Aug 5;265(22):12978–12986. [PubMed] [Google Scholar]
  3. Chepuri V., Lemieux L., Au D. C., Gennis R. B. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185–11192. [PubMed] [Google Scholar]
  4. Fridén H., Cheesman M. R., Hederstedt L., Andersson K. K., Thomson A. J. Low temperature EPR and MCD studies on cytochrome b-558 of the Bacillus subtilis succinate: quinone oxidoreductase indicate bis-histidine coordination of the heme iron. Biochim Biophys Acta. 1990 Nov 15;1041(2):207–215. doi: 10.1016/0167-4838(90)90067-p. [DOI] [PubMed] [Google Scholar]
  5. Fridén H., Rutberg L., Magnusson K., Hederstedt L. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558. Eur J Biochem. 1987 Nov 2;168(3):695–701. doi: 10.1111/j.1432-1033.1987.tb13471.x. [DOI] [PubMed] [Google Scholar]
  6. Haima P., Bron S., Venema G. The effect of restriction on shotgun cloning and plasmid stability in Bacillus subtilis Marburg. Mol Gen Genet. 1987 Sep;209(2):335–342. doi: 10.1007/BF00329663. [DOI] [PubMed] [Google Scholar]
  7. Harayama S., Kok M., Neidle E. L. Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol. 1992;46:565–601. doi: 10.1146/annurev.mi.46.100192.003025. [DOI] [PubMed] [Google Scholar]
  8. Hederstedt L. Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 1986;126:399–414. doi: 10.1016/s0076-6879(86)26040-1. [DOI] [PubMed] [Google Scholar]
  9. Hoch J. A. Genetic analysis in Bacillus subtilis. Methods Enzymol. 1991;204:305–320. doi: 10.1016/0076-6879(91)04015-g. [DOI] [PubMed] [Google Scholar]
  10. Holmberg C., Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol Microbiol. 1991 Dec;5(12):2891–2900. doi: 10.1111/j.1365-2958.1991.tb01849.x. [DOI] [PubMed] [Google Scholar]
  11. Hägerhäll C., Aasa R., von Wachenfeldt C., Hederstedt L. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry. 1992 Aug 18;31(32):7411–7421. doi: 10.1021/bi00147a028. [DOI] [PubMed] [Google Scholar]
  12. James W. S., Gibson F., Taroni P., Poole R. K. The cytochrome oxidases of Bacillus subtilis: mapping of a gene affecting cytochrome aa3 and its replacement by cytochrome o in a mutant strain. FEMS Microbiol Lett. 1989 Apr;49(2-3):277–281. doi: 10.1016/0378-1097(89)90053-0. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lauraeus M., Haltia T., Saraste M., Wikström M. Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem. 1991 May 8;197(3):699–705. doi: 10.1111/j.1432-1033.1991.tb15961.x. [DOI] [PubMed] [Google Scholar]
  15. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  16. Matsudaira P. Limited N-terminal sequence analysis. Methods Enzymol. 1990;182:602–613. doi: 10.1016/0076-6879(90)82047-6. [DOI] [PubMed] [Google Scholar]
  17. Mueller J. P., Taber H. W. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4967–4978. doi: 10.1128/jb.171.9.4967-4978.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mueller J. P., Taber H. W. Structure and expression of the cytochrome aa3 regulatory gene ctaA of Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4979–4986. doi: 10.1128/jb.171.9.4979-4986.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
  20. Nobrega M. P., Nobrega F. G., Tzagoloff A. COX10 codes for a protein homologous to the ORF1 product of Paracoccus denitrificans and is required for the synthesis of yeast cytochrome oxidase. J Biol Chem. 1990 Aug 25;265(24):14220–14226. [PubMed] [Google Scholar]
  21. Petricek M., Rutberg L., Hederstedt L. The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):85–87. doi: 10.1016/0378-1097(89)90175-4. [DOI] [PubMed] [Google Scholar]
  22. Porra R. J., Schäfer W., Cmiel E., Katheder I., Scheer H. Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett. 1993 May 24;323(1-2):31–34. doi: 10.1016/0014-5793(93)81442-3. [DOI] [PubMed] [Google Scholar]
  23. Quirk P. G., Hicks D. B., Krulwich T. A. Cloning of the cta operon from alkaliphilic Bacillus firmus OF4 and characterization of the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem. 1993 Jan 5;268(1):678–685. [PubMed] [Google Scholar]
  24. Raitio M., Jalli T., Saraste M. Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J. 1987 Sep;6(9):2825–2833. doi: 10.1002/j.1460-2075.1987.tb02579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saiki K., Mogi T., Hori H., Tsubaki M., Anraku Y. Identification of the functional domains in heme O synthase. Site-directed mutagenesis studies on the cyoE gene of the cytochrome bo operon in Escherichia coli. J Biol Chem. 1993 Dec 25;268(36):26927–26934. [PubMed] [Google Scholar]
  26. Saiki K., Mogi T., Ogura K., Anraku Y. In vitro heme O synthesis by the cyoE gene product from Escherichia coli. J Biol Chem. 1993 Dec 15;268(35):26041–26044. [PubMed] [Google Scholar]
  27. Salerno J. C., McCurley J. P., Dong J. H., Doyle M. F., Yu L., Yu C. A. The EPR spectra of the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun. 1986 Apr 29;136(2):616–621. doi: 10.1016/0006-291x(86)90485-7. [DOI] [PubMed] [Google Scholar]
  28. Santana M., Kunst F., Hullo M. F., Rapoport G., Danchin A., Glaser P. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. J Biol Chem. 1992 May 25;267(15):10225–10231. [PubMed] [Google Scholar]
  29. Saraste M., Metso T., Nakari T., Jalli T., Lauraeus M., Van der Oost J. The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. Eur J Biochem. 1991 Jan 30;195(2):517–525. doi: 10.1111/j.1432-1033.1991.tb15732.x. [DOI] [PubMed] [Google Scholar]
  30. Schneegurt M. A., Beale S. I. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry. 1992 Dec 1;31(47):11677–11683. doi: 10.1021/bi00162a002. [DOI] [PubMed] [Google Scholar]
  31. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  32. Svensson B., Lübben M., Hederstedt L. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol Microbiol. 1993 Oct;10(1):193–201. doi: 10.1111/j.1365-2958.1993.tb00915.x. [DOI] [PubMed] [Google Scholar]
  33. Takahashi S., Wang J., Rousseau D. L., Ishikawa K., Yoshida T., Host J. R., Ikeda-Saito M. Heme-heme oxygenase complex. Structure of the catalytic site and its implication for oxygen activation. J Biol Chem. 1994 Jan 14;269(2):1010–1014. [PubMed] [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  35. van der Oost J., von Wachenfeld C., Hederstedt L., Saraste M. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol Microbiol. 1991 Aug;5(8):2063–2072. doi: 10.1111/j.1365-2958.1991.tb00829.x. [DOI] [PubMed] [Google Scholar]
  36. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]
  37. von Wachenfeldt C., Hederstedt L. Molecular biology of Bacillus subtilis cytochromes. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):91–100. doi: 10.1111/j.1574-6968.1992.tb14025.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES