Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Nov;176(22):6892–6899. doi: 10.1128/jb.176.22.6892-6899.1994

Quantitative discrimination of carrier-mediated excretion of isoleucine from uptake and diffusion in Corynebacterium glutamicum.

S Zittrich 1, R Krämer 1
PMCID: PMC197058  PMID: 7961449

Abstract

The efflux of isoleucine in whole cells of Corynebacterium glutamicum was studied. The different amino acid fluxes across the plasma membrane were functionally discriminated into passive diffusion, carrier-mediated excretion, and carrier-mediated uptake. Detailed kinetic analysis was made possible by controlled variation of internal isoleucine from low concentrations to 100 mM by feeding with mixtures of isoleucine-containing peptides. Isoleucine diffusion was experimentally separated and proceeded with a first-order rate constant of 0.083 min-1 or 0.13 microliters.min-1.mg (dry mass)-1, which corresponds to a permeability of 2 x 10(-8) cm.s-1. Uptake of isoleucine was constant at a rate of 1.1 nmol.min-1.mg (dry mass)-1. Carrier-mediated isoleucine excretion was zero below a threshold of 8 mM cytosolic isoleucine. Above this level, a Michaelis-Menten-type kinetics was observed, with a Km of 21 mM (13 mM plus 8 mM threshold value) and a Vmax of 14.5 nmol.min-1.mg (dry mass)-1. The activity of the isoleucine excretion carrier depended on the presence of a membrane potential. Excretion was specific for L-isoleucine (and presumably L-leucine) and could be inhibited by SH reagents.

Full text

PDF
6892

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bröer S., Krämer R. Lysine excretion by Corynebacterium glutamicum. 1. Identification of a specific secretion carrier system. Eur J Biochem. 1991 Nov 15;202(1):131–135. doi: 10.1111/j.1432-1033.1991.tb16353.x. [DOI] [PubMed] [Google Scholar]
  2. Bröer S., Krämer R. Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem. 1991 Nov 15;202(1):137–143. doi: 10.1111/j.1432-1033.1991.tb16354.x. [DOI] [PubMed] [Google Scholar]
  3. Bröer S., Krämer R. Lysine uptake and exchange in Corynebacterium glutamicum. J Bacteriol. 1990 Dec;172(12):7241–7248. doi: 10.1128/jb.172.12.7241-7248.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Driessen A. J., Hellingwerf K. J., Konings W. N. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J Biol Chem. 1987 Sep 15;262(26):12438–12443. [PubMed] [Google Scholar]
  5. Ebbighausen H., Weil B., Krämer R. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch Microbiol. 1989;151(3):238–244. doi: 10.1007/BF00413136. [DOI] [PubMed] [Google Scholar]
  6. Eikmanns B. J., Eggeling L., Sahm H. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek. 1993;64(2):145–163. doi: 10.1007/BF00873024. [DOI] [PubMed] [Google Scholar]
  7. Gutmann M., Hoischen C., Krämer R. Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta. 1992 Nov 23;1112(1):115–123. doi: 10.1016/0005-2736(92)90261-j. [DOI] [PubMed] [Google Scholar]
  8. Hagting A., Kunji E. R., Leenhouts K. J., Poolman B., Konings W. N. The di- and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. J Biol Chem. 1994 Apr 15;269(15):11391–11399. [PubMed] [Google Scholar]
  9. Jarlier V., Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol. 1990 Mar;172(3):1418–1423. doi: 10.1128/jb.172.3.1418-1423.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Konings W. N., Poolman B., Driessen A. J. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992 Feb;8(2):93–108. doi: 10.1111/j.1574-6968.1992.tb04959.x. [DOI] [PubMed] [Google Scholar]
  11. Krämer R. Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol. 1994;162(1-2):1–13. doi: 10.1007/BF00264366. [DOI] [PubMed] [Google Scholar]
  12. Miyajima R., Otsuka S., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. I. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem. 1968 Feb;63(2):139–148. doi: 10.1093/oxfordjournals.jbchem.a128754. [DOI] [PubMed] [Google Scholar]
  13. Smid E. J., Driessen A. J., Konings W. N. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J Bacteriol. 1989 Jan;171(1):292–298. doi: 10.1128/jb.171.1.292-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES