Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Dec;176(23):7252–7259. doi: 10.1128/jb.176.23.7252-7259.1994

Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis 168.

J H Pollack 1, F C Neuhaus 1
PMCID: PMC197113  PMID: 7961496

Abstract

Wall teichoic acid (WTA) is essential for the growth of Bacillus subtilis 168. To clarify the function of this polymer, the WTAs of strains 168, 104 rodB1, and 113 tagF1 (rodC1) grown at 32 and 42 degrees C were characterized. At the restrictive temperature, the rodB1 and tagF1 (rodC1) mutants undergo a rod-to-sphere transition that is correlated with changes in the WTA content of the cell wall. The amount of WTA decreased 33% in strain 104 rodB1 and 84% in strain 113 tagF1 (rodC1) when they were grown at the restrictive temperature. The extent of alpha-D-glucosylation (0.84) was not affected by growth at the higher temperature in these strains. The degree of D-alanylation decreased from 0.22 to 0.10 in the rodB1 mutant but remained constant (0.12) in the tagF1 (rodC1) mutant at both temperatures. Under these conditions, the degree of D-alanylation in the parent strain decreased from 0.27 to 0.21. The chain lengths of WTA in strains 168 and 104 rodB1 grown at both temperatures were approximately 53 residues, with a range of 45 to 60. In contrast, although the chain length of WTA from the tagF1 (rodC1) mutant at 32 degrees C was similar to that of strains 168 and 104 rodB1, it was approximately eight residues at the restrictive temperature. The results suggested that the rodB1 mutant is partially deficient in completed poly(glycerophosphate) chains. The precise biochemical defect in this mutant remains to be determined. The results for strain 113 tagF1(rodC1) are consistent with the temperature-sensitive defect in the CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase (H. M. Pooley, F.-X. Abellan, and D. Karamata, J. Bacteriol. 174:646-649, 1992).

Full text

PDF
7252

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Araki Y., Ito E. Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol. 1989;17(2):121–135. doi: 10.3109/10408418909105745. [DOI] [PubMed] [Google Scholar]
  3. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol. 1972 Apr;110(1):281–290. doi: 10.1128/jb.110.1.281-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boylan R. J., Mendelson N. H. Initial characterization of a temperature-sensitive rod--mutant of Bacillus subtilis. J Bacteriol. 1969 Dec;100(3):1316–1321. doi: 10.1128/jb.100.3.1316-1321.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boylen C. W., Ensign J. C. Ratio of teichoic acid and peptidoglycan in cell walls of Bacillus subtilis following spire germination and during vegetative growth. J Bacteriol. 1968 Aug;96(2):421–427. doi: 10.1128/jb.96.2.421-427.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burdett I. D. Electron microscope study of the rod-to-coccus shape change in a temperature-sensitive rod- mutant of Bacillus subtilis. J Bacteriol. 1979 Mar;137(3):1395–1405. doi: 10.1128/jb.137.3.1395-1405.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole R. M., Popkin T. J., Boylan R. J., Mendelson N. H. Ultrastructure of a temperature-sensitive rod- mutant of Bacillus subtilis. J Bacteriol. 1970 Sep;103(3):793–810. doi: 10.1128/jb.103.3.793-810.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coley J., Tarelli E., Archibald A. R., Baddiley J. The linkage between teichoic acid and peptidoglycan in bacterial cell walls. FEBS Lett. 1978 Apr 1;88(1):1–9. doi: 10.1016/0014-5793(78)80594-8. [DOI] [PubMed] [Google Scholar]
  9. DIVEN W. F., SCHOLZ J. J., JOHNSTON R. B. PURIFICATION AND PROPERTIES OF THE ALANINE RACEMASE FROM BACILLUS SUBTILIS. Biochim Biophys Acta. 1964 May 4;85:322–332. doi: 10.1016/0926-6569(64)90253-6. [DOI] [PubMed] [Google Scholar]
  10. Doyle R. J., Birdsell D. C., Young F. E. Isolation of the teichoic acid of Bacillus subtilis 168 by affinity chromatography. Prep Biochem. 1973;3(1):13–18. doi: 10.1080/00327487308061485. [DOI] [PubMed] [Google Scholar]
  11. Doyle R. J., McDannel M. L., Streips U. N., Birdsell D. C., Young F. E. Polyelectrolyte nature of bacterial teichoic acids. J Bacteriol. 1974 May;118(2):606–615. doi: 10.1128/jb.118.2.606-615.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duckworth M., Archibald A. R., Baddiley J. The location of N-acetylgalactosamine in the walls of Bacillus subtilis 168. Biochem J. 1972 Dec;130(3):691–696. doi: 10.1042/bj1300691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ellwood D. C., Tempest D. W. Control of teichoic acid and teichuronic acid biosyntheses in chemostat cultures of Bacillus subtilis var. niger. Biochem J. 1969 Jan;111(1):1–5. doi: 10.1042/bj1110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Estrela A. I., Pooley H. M., de Lencastre H., Karamata D. Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J Gen Microbiol. 1991 Apr;137(4):943–950. doi: 10.1099/00221287-137-4-943. [DOI] [PubMed] [Google Scholar]
  15. Fischer W., Koch H. U., Haas R. Improved preparation of lipoteichoic acids. Eur J Biochem. 1983 Jul 1;133(3):523–530. doi: 10.1111/j.1432-1033.1983.tb07495.x. [DOI] [PubMed] [Google Scholar]
  16. Grant W. D. Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):35–43. doi: 10.1128/jb.137.1.35-43.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harrington C. R., Baddiley J. Biosynthesis of wall teichoic acids in Staphylococcus aureus H, Micrococcus varians and Bacillus subtilis W23. Involvement of lipid intermediates containing the disaccharide N-acetylmannosaminyl N-acetylglucosamine. Eur J Biochem. 1985 Dec 16;153(3):639–645. doi: 10.1111/j.1432-1033.1985.tb09348.x. [DOI] [PubMed] [Google Scholar]
  18. Honeyman A. L., Stewart G. C. Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis. Mol Microbiol. 1988 Nov;2(6):735–741. doi: 10.1111/j.1365-2958.1988.tb00084.x. [DOI] [PubMed] [Google Scholar]
  19. Honeyman A. L., Stewart G. C. The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol Microbiol. 1989 Sep;3(9):1257–1268. doi: 10.1111/j.1365-2958.1989.tb00276.x. [DOI] [PubMed] [Google Scholar]
  20. Hughes R. C., Tanner P. J. The action of dilute alkali on some bacterial cell walls. Biochem Biophys Res Commun. 1968 Oct 10;33(1):22–28. doi: 10.1016/0006-291x(68)90248-9. [DOI] [PubMed] [Google Scholar]
  21. Johnson A. R. Improved method of hexosamine determination. Anal Biochem. 1971 Dec;44(2):628–635. doi: 10.1016/0003-2697(71)90252-1. [DOI] [PubMed] [Google Scholar]
  22. Karamata D., McConnell M., Rogers H. J. Mapping of rod mutants of Bacillus subtilis. J Bacteriol. 1972 Jul;111(1):73–79. doi: 10.1128/jb.111.1.73-79.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaya S., Yokoyama K., Araki Y., Ito E. N-acetylmannosaminyl(1----4)N-acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls of several Bacillus strains. J Bacteriol. 1984 Jun;158(3):990–996. doi: 10.1128/jb.158.3.990-996.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koch A. L., Doyle R. J. Inside-to-outside growth and turnover of the wall of gram-positive rods. J Theor Biol. 1985 Nov 7;117(1):137–157. doi: 10.1016/s0022-5193(85)80169-7. [DOI] [PubMed] [Google Scholar]
  25. Lang W. K., Glassey K., Archibald A. R. Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls. J Bacteriol. 1982 Jul;151(1):367–375. doi: 10.1128/jb.151.1.367-375.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Levin P. A., Margolis P. S., Setlow P., Losick R., Sun D. Identification of Bacillus subtilis genes for septum placement and shape determination. J Bacteriol. 1992 Nov;174(21):6717–6728. doi: 10.1128/jb.174.21.6717-6728.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ludowieg J., Benmaman J. D. Colorimetric differentiation of hexosamines. Anal Biochem. 1967 Apr;19(1):80–88. doi: 10.1016/0003-2697(67)90136-4. [DOI] [PubMed] [Google Scholar]
  28. Mauël C., Young M., Karamata D. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol. 1991 Apr;137(4):929–941. doi: 10.1099/00221287-137-4-929. [DOI] [PubMed] [Google Scholar]
  29. Mauël C., Young M., Margot P., Karamata D. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet. 1989 Feb;215(3):388–394. doi: 10.1007/BF00427034. [DOI] [PubMed] [Google Scholar]
  30. Min H., Cowman M. K. Combined alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution. Anal Biochem. 1986 Jun;155(2):275–285. doi: 10.1016/0003-2697(86)90437-9. [DOI] [PubMed] [Google Scholar]
  31. Pavlik J. G., Rogers H. J. Selective extraction of polymers from cell walls of gram-positive bacteria. Biochem J. 1973 Mar;131(3):619–621. doi: 10.1042/bj1310619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pollack J. H., Ntamere A. S., Neuhaus F. C. D-alanyl-lipoteichoic acid in Lactobacillus casei: secretion of vesicles in response to benzylpenicillin. J Gen Microbiol. 1992 May;138(5):849–859. doi: 10.1099/00221287-138-5-849. [DOI] [PubMed] [Google Scholar]
  33. Pons A., Roca P., Aguiló C., Garcia F. J., Alemany M., Palou A. A method for the simultaneous determination of total carbohydrate and glycerol in biological samples with the anthrone reagent. J Biochem Biophys Methods. 1981 Mar;4(3-4):227–231. doi: 10.1016/0165-022x(81)90060-9. [DOI] [PubMed] [Google Scholar]
  34. Pooley H. M., Abellan F. X., Karamata D. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol. 1992 Jan;174(2):646–649. doi: 10.1128/jb.174.2.646-649.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pooley H. M., Paschoud D., Karamata D. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J Gen Microbiol. 1987 Dec;133(12):3481–3493. doi: 10.1099/00221287-133-12-3481. [DOI] [PubMed] [Google Scholar]
  36. Reeve J. N., Mendelson N. H., Coyne S. I., Hallock L. L., Cole R. M. Minicells of Bacillus subtilis. J Bacteriol. 1973 May;114(2):860–873. doi: 10.1128/jb.114.2.860-873.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rogers H. J., McConnell M., Burdett I. D. Cell wall or membrane mutants of Bacillus subtilis and Bacillus licheniformis with grossly deformed morphology. Nature. 1968 Jul 20;219(5151):285–288. doi: 10.1038/219285a0. [DOI] [PubMed] [Google Scholar]
  38. Rogers H. J., McConnell M., Hughes R. C. The chemistry of the cell walls of rod mutants of Bacillus subtilis. J Gen Microbiol. 1971 Jun;66(3):297–308. doi: 10.1099/00221287-66-3-297. [DOI] [PubMed] [Google Scholar]
  39. Rogers H. J., Taylor C. Autolysins and shape change in rodA mutants of Bacillus subtilis. J Bacteriol. 1978 Sep;135(3):1032–1042. doi: 10.1128/jb.135.3.1032-1042.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rogers H. J., Thurman P. F., Buxton R. S. Magnesium and anion requirements of rodB mutants of Bacillus subtilis. J Bacteriol. 1976 Feb;125(2):556–564. doi: 10.1128/jb.125.2.556-564.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rogers H. J., Thurman P. F. Temperature-sensitive nature of the rodB maturation in Bacillus subtilis. J Bacteriol. 1978 Jan;133(1):298–305. doi: 10.1128/jb.133.1.298-305.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sasaki Y., Araki Y., Ito E. Structure of linkage region between glycerol teichoic acid and peptidoglycan in Bacillus cereus AHU 1030 cell walls. Biochem Biophys Res Commun. 1980 Sep 30;96(2):529–534. doi: 10.1016/0006-291x(80)91388-1. [DOI] [PubMed] [Google Scholar]
  43. Shibaev V. N., Duckworth M., Archibald A. R., Baddiley J. The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J. 1973 Oct;135(2):383–384. doi: 10.1042/bj1350383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shiflett M. A., Brooks D., Young F. E. Cell wall and morphological changes induced by temperature shift in Bacillus subtilis cell wall mutants. J Bacteriol. 1977 Nov;132(2):681–690. doi: 10.1128/jb.132.2.681-690.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Soldo B., Lazarevic V., Margot P., Karamata D. Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol. 1993 Dec;139(12):3185–3195. doi: 10.1099/00221287-139-12-3185. [DOI] [PubMed] [Google Scholar]
  46. Tempest D. W., Dicks J. W., Ellwood D. C. Influence of growth condition on the concentration of potassium in Bacillus subtilis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid. Biochem J. 1968 Jan;106(1):237–243. doi: 10.1042/bj1060237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Van Etten J. L., Freer S. N. Simple procedure for disruption of fungal spores. Appl Environ Microbiol. 1978 Mar;35(3):622–623. doi: 10.1128/aem.35.3.622-623.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Varley A. W., Stewart G. C. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J Bacteriol. 1992 Nov;174(21):6729–6742. doi: 10.1128/jb.174.21.6729-6742.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wagner P. M., Stewart G. C. Role and expression of the Bacillus subtilis rodC operon. J Bacteriol. 1991 Jul;173(14):4341–4346. doi: 10.1128/jb.173.14.4341-4346.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wagner W. D. A more sensitive assay discriminating galactosamine and glucosamine in mixtures. Anal Biochem. 1979 Apr 15;94(2):394–396. doi: 10.1016/0003-2697(79)90379-8. [DOI] [PubMed] [Google Scholar]
  51. Wolters P. J., Hildebrandt K. M., Dickie J. P., Anderson J. S. Polymer length of teichuronic acid released from cell walls of Micrococcus luteus. J Bacteriol. 1990 Sep;172(9):5154–5159. doi: 10.1128/jb.172.9.5154-5159.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yoneyama T., Koike Y., Arakawa H., Yokoyama K., Sasaki Y., Kawamura T., Araki Y., Ito E., Takao S. Distribution of mannosamine and mannosaminuronic acid among cell walls of Bacillus species. J Bacteriol. 1982 Jan;149(1):15–21. doi: 10.1128/jb.149.1.15-21.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Young F. E. Fractionation and partial characterization of the products of autolysis of cell walls of Bacillus subtilis. J Bacteriol. 1966 Oct;92(4):839–846. doi: 10.1128/jb.92.4.839-846.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES